Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Want bigger plants? Get to the root of the matter

02.07.2012
Plant scientists have imaged and analyzed, for the first time, how a potted plant's roots are arranged in the soil as the plant develops. In this study, to be presented at the Society for Experimental Biology meeting on 30th June, the team has also found that doubling plant pot size makes plants grow over 40% larger.

From their 3-D MRI root scans, the researchers observed that potted plants quickly extend their roots to the pot's walls. It is likely that the plants use their roots to 'sense' the size of the pot, although the details of how the roots relay the message about the pot's size remain the plants' secret.


Left: This image shows the roots of a barley plant in a cylindrical pot imaged by MRI 44 days after sowing. Blue roots are in the outer 50 percent of the pot volume, yellow roots are in the inner 50 percent of the pot volume, the stem of the barley plant is in red. Credit: Jonas Bühler

Right: This image shows the roots of a sugar beet growing in a cylindrical pot, imaged by MRI 44 days after sowing. Roots in blue grew in the outer 50 percent volume of the pot, roots in yellow grew in the inner 50 percent pot volume, and the storage organ of the sugar beet is in red. Credit: Jonas Bühler

They also looked at 65 independent studies across a wide range of species including tomato, corn, pine tree, cactus, wheat, and cotton plants, and found that all species reach larger sizes when grown in a bigger pot. On average, doubling pot size allowed plants to grow 43% larger.

Dr Hendrik Poorter (Forschungszentrum Jülich, Germany) who led the study, said: "There has been commercial interest in seeing how small pots can be, but our aim was to see how big a pot needs to be to avoid affecting plant experiments."

The work is relevant for gardeners too. Poorter added, "After this study, I immediately changed the pot size for all the plants I had in my house."

To understand the pot size effect, the scientists looked at various aspects of the plants' growth. They found that the plants in smaller pots grew more slowly because of a decreased rate of photosynthesis. But, looking for causes for the decrease, the scientists ruled out limitations in water and nutrients and did not find any differences in the thickness of the leaves for plants in smaller pots. It is therefore unlikely that the plants use water and nutrient levels to sense the pot size, supporting the possibility that sensing happens another way, such as by the roots.

Catie Lichten | EurekAlert!
Further information:
http://www.fz-juelich.de

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>