Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bigger human genome pool uncovers more rare variants

02.11.2012
Thanks to powerful computational tools developed at Simon Fraser University, more than 100 scientists from around the world have genetically mapped the largest and most varied number of human genomes to date.

The scientists, including SFU doctoral students Iman Hajirasouliha and Fereydoun Hormozdiari (recently graduated), sequenced and analyzed a pool of 1092 human genomes. Hormozdiari is now pursuing postdoctoral studies at the University of Washington.

The scientists sequenced the genomes of individuals from 14 different populations (five from Europe; three from Africa; three from East Asia; three from the Americas). The researchers used computational tools developed in Cenk Sahinalp’s lab to discover many variants in those genomes. Sahinalp, who is Hajirasouliha’s and Hormozdiari’s doctoral supervisor, is a professor in SFU’s School of Computing Science.

In the largest previous study, which also involved Hajirasouliha and Hormozdiari in Sahinalp’s lab, scientists sequenced the genomes of 185 people selected from an original pool of 1,000 human genomes.

Delving into a larger and more varied pool of genetic information has enabled the scientists to discover more numerous and rarer genetic variations than previously known.

Their findings have just been published in the Nature journal article An integrated map of genetic variation from 1,092 human genomes now online.

“Rare genetic variants are indeed very important because on the evolutionary scale, they occurred most recently,” explains Hajirasouliha. “Their patterns of sharing among different individuals can reveal aspects of population history. They are also very important in disease association studies, which aim often today to associate rare variants with diseases of genomic origin, such as autism and cancer.”

The researchers have yet to figure out what their latest genetic cache means in terms of population health and diseases. That could take years. They are sifting through 38 million variations in a single nucleotide of DNA and 1.4 million small insertions and deletions and more than 14 thousand larger deletions in DNA sequences.

Hajirasouliha is already looking ahead to the next big project. “I would personally like to see more individuals from more populations being sequenced, with less focus on European populations. I would also like to look for more complex variations,” says the researcher. “This kind of sequencing is extremely important for medical genetic studies in many populations. In fact, there are plans to extend genomic mapping to 1,500 more people representing 11 new populations.”

Contact:
Iman Hajirasouliha, 778.782.7040, 604.418.4834 (cell), imanh@sfu.ca
Carol Thorbes, PAMR, 778.782.3035, cthorbes@sfu.ca

Carol Thorbes | EurekAlert!
Further information:
http://www.sfu.ca

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

Smart Computers

21.08.2017 | Information Technology

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>