Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bigger human genome pool uncovers more rare variants

02.11.2012
Thanks to powerful computational tools developed at Simon Fraser University, more than 100 scientists from around the world have genetically mapped the largest and most varied number of human genomes to date.

The scientists, including SFU doctoral students Iman Hajirasouliha and Fereydoun Hormozdiari (recently graduated), sequenced and analyzed a pool of 1092 human genomes. Hormozdiari is now pursuing postdoctoral studies at the University of Washington.

The scientists sequenced the genomes of individuals from 14 different populations (five from Europe; three from Africa; three from East Asia; three from the Americas). The researchers used computational tools developed in Cenk Sahinalp’s lab to discover many variants in those genomes. Sahinalp, who is Hajirasouliha’s and Hormozdiari’s doctoral supervisor, is a professor in SFU’s School of Computing Science.

In the largest previous study, which also involved Hajirasouliha and Hormozdiari in Sahinalp’s lab, scientists sequenced the genomes of 185 people selected from an original pool of 1,000 human genomes.

Delving into a larger and more varied pool of genetic information has enabled the scientists to discover more numerous and rarer genetic variations than previously known.

Their findings have just been published in the Nature journal article An integrated map of genetic variation from 1,092 human genomes now online.

“Rare genetic variants are indeed very important because on the evolutionary scale, they occurred most recently,” explains Hajirasouliha. “Their patterns of sharing among different individuals can reveal aspects of population history. They are also very important in disease association studies, which aim often today to associate rare variants with diseases of genomic origin, such as autism and cancer.”

The researchers have yet to figure out what their latest genetic cache means in terms of population health and diseases. That could take years. They are sifting through 38 million variations in a single nucleotide of DNA and 1.4 million small insertions and deletions and more than 14 thousand larger deletions in DNA sequences.

Hajirasouliha is already looking ahead to the next big project. “I would personally like to see more individuals from more populations being sequenced, with less focus on European populations. I would also like to look for more complex variations,” says the researcher. “This kind of sequencing is extremely important for medical genetic studies in many populations. In fact, there are plans to extend genomic mapping to 1,500 more people representing 11 new populations.”

Contact:
Iman Hajirasouliha, 778.782.7040, 604.418.4834 (cell), imanh@sfu.ca
Carol Thorbes, PAMR, 778.782.3035, cthorbes@sfu.ca

Carol Thorbes | EurekAlert!
Further information:
http://www.sfu.ca

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>