Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bigger creatures live longer, travel farther for a reason

A long-standing mystery in biology about the longer lifespans of bigger creatures may be explained by the application of a physical law called the Constructal Law (

What this law proposes is that anything that flows -- a river, bloodstream or highway network -- will evolve toward the same basic configuration out of a need to be more efficient. And, as it turns out, that same basic law applies to all bodies in motion, be they animals or tanker trucks, says Adrian Bejan, the J.A. Jones Professor of mechanical engineering at Duke and father of the Constructal Law.

In his latest theory paper, appearing Aug. 24 in the journal Nature Scientific Reports, Bejan argues that there is a universal tendency for larger things, animate and inanimate, to live longer and to travel further.

He starts his argument with an examination of the well-known observation in biology that larger animals tend to live longer. Bejan wanted to see if this general rule might apply to inanimate systems as well and proceeded to mathematically analyze the relationship in rivers, jets of air and vehicles.

He found, as a general rule, that bigger rivers are older and that larger jets of air, such as atmospheric jet streams, last longer. By his calculations, larger vehicles should also last longer, but hard evidence of that is lacking, he says, and there are outliers of course, like Subaru Justys with 300,000 miles.

By being larger and lasting longer, all of these systems also travel farther, he says.

If you look at a moving vehicle or animal simply as a mass in motion, that is, something flowing, "the spreading of the mass of vehicles and animals is completely analogous to the flow of water in river channels," Bejan says. "It is the same design."

Interestingly, if the body size and lifespan of known species of animals are plotted on a curve, it falls on a slope of about ¼. And then, following a different line of inquiry, if you plot the frequency of breathing to body size, that is a slope of -1/4.

When combined, these two insights about animal body size work out to a constant for the number of breaths per lifetime, Bejan says. This gives most creatures about the same number of breaths in their lifetime, but the larger, slower-breathing animals use their breaths up over a longer span of time. "So bigger means a longer lifespan," he said. "I was looking at this enigma about body size and longevity from a point of view that hadn't occurred to biologists," Bejan said.

The Constructal Law governs how big an engine a truck needs and how big a heart a whale needs. "There's no difference between a vehicle and an animal," Bejan said. "Being larger means two things, not one: you live longer and you travel farther."

There are, of course, notable exceptions to the rule: The 4-ounce Arctic Tern travels more than 44,000 miles a year.

"The size-effect on travel and life time is the same for the animate and the inanimate," Bejan argues. "Everything that moves enjoys the same design."

CITATION: "Why the bigger live longer and travel farther: animals, vehicles, rivers and the winds." Adrian Bejan, Nature Scientific Reports. Aug 24, 2012

Karl Leif Bates | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Microbe hunters discover long-sought-after iron-munching microbe
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.
24.10.2016 | Max-Planck-Institut für Hirnforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.

24.10.2016 | Life Sciences

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

More VideoLinks >>>