Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The bigger the animal, the stiffer the 'shoes'

25.02.2010
If a Tiger's feet were built the same way as a mongoose's feet, they'd have to be about the size of a hippo's feet to support the big cat's weight. But they're not.

For decades, researchers have been looking at how different-sized legs and feet are put together across the four-legged animal kingdom, but until now they overlooked the "shoes," those soft pads on the bottom of the foot that bear the brunt of the animal's walking and running.

New research from scientists in Taiwan and at Duke University has found that the mechanical properties of the pads vary in predictable fashion as animals get larger. In short, bigger critters need stiffer shoes.

Kai-Jung Chi, an assistant professor of physics at National Chung Hsing University in Taiwan ran a series of carefully calibrated "compressive tests" on the footpads of carnivores that have that extra toe halfway up the foreleg, including dogs, wolves, domestic cats, leopards and hyenas. She was measuring the relative stiffness of the pads across species – how much they deformed under a given amount of compression.

"People hadn't looked at pads," said co-author V. Louise Roth, an associate professor of biology and evolutionary anthropology who was Chi's thesis adviser at Duke. "They've been looking at the bones and muscles, but not that soft tissue."

Whether running, walking or standing still, the bulk of the animal's weight is borne on that pillowy clover-shaped pad behind the four toes, the metapodial-phalangeal pad, or m-p pad for short. It's made from pockets of fatty tissue hemmed in by baffles of collagen. Chi carefully dissected these pads whole from the feet of deceased animals (none of which were euthanized for this study), so that they could be put in the strain meter by themselves without any surrounding structures.

Laid out on a graph, Chi's analysis of 47 carnivore species shows that the area of their m-p pads doesn't increase at the same rate as the body sizes. But the stiffness of pads does increase with size, and that's what keeps the larger animal's feet from being unwieldy.

The mass of the animal increases cubically with its greater size, but the feet don't scale up the same way. "A mouse and an elephant are made with the same ingredients," Roth said. "So how do you do that?"

Earlier research had found that the stresses on the long bones of the limbs stay fairly consistent over the range of sizes, in part because of changes in posture that distribute the stresses of walking differently, Roth said. But that clearly wasn't enough by itself.

The researchers also found that larger animals have a pronounced difference in stiffness between the pads on the forelimbs and the pads on the hind limbs. Bigger animals have relatively softer pads on their rear feet, whereas in smaller animals the front and rear are about the same stiffness.

Chi thinks the softer pads on the rear of the bigger animals may help them recover some energy from each step, and provide a bit more boost to their propulsion. (Think of the way a large predator folds up its forelimbs and launches itself with its hind legs.)

"It is as if the foot pads' stiffness is tuned to enhance how the animal moves and how strength is maintained in its bones," Roth said.

The research appears today in the Journal of the Royal Society, Interface. It was supported by the National Science Foundation.

Chi has new work under way that looks at the construction of the human heel in the same ways.

Karl Leif Bates | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>