Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The bigger the animal, the stiffer the 'shoes'

25.02.2010
If a Tiger's feet were built the same way as a mongoose's feet, they'd have to be about the size of a hippo's feet to support the big cat's weight. But they're not.

For decades, researchers have been looking at how different-sized legs and feet are put together across the four-legged animal kingdom, but until now they overlooked the "shoes," those soft pads on the bottom of the foot that bear the brunt of the animal's walking and running.

New research from scientists in Taiwan and at Duke University has found that the mechanical properties of the pads vary in predictable fashion as animals get larger. In short, bigger critters need stiffer shoes.

Kai-Jung Chi, an assistant professor of physics at National Chung Hsing University in Taiwan ran a series of carefully calibrated "compressive tests" on the footpads of carnivores that have that extra toe halfway up the foreleg, including dogs, wolves, domestic cats, leopards and hyenas. She was measuring the relative stiffness of the pads across species – how much they deformed under a given amount of compression.

"People hadn't looked at pads," said co-author V. Louise Roth, an associate professor of biology and evolutionary anthropology who was Chi's thesis adviser at Duke. "They've been looking at the bones and muscles, but not that soft tissue."

Whether running, walking or standing still, the bulk of the animal's weight is borne on that pillowy clover-shaped pad behind the four toes, the metapodial-phalangeal pad, or m-p pad for short. It's made from pockets of fatty tissue hemmed in by baffles of collagen. Chi carefully dissected these pads whole from the feet of deceased animals (none of which were euthanized for this study), so that they could be put in the strain meter by themselves without any surrounding structures.

Laid out on a graph, Chi's analysis of 47 carnivore species shows that the area of their m-p pads doesn't increase at the same rate as the body sizes. But the stiffness of pads does increase with size, and that's what keeps the larger animal's feet from being unwieldy.

The mass of the animal increases cubically with its greater size, but the feet don't scale up the same way. "A mouse and an elephant are made with the same ingredients," Roth said. "So how do you do that?"

Earlier research had found that the stresses on the long bones of the limbs stay fairly consistent over the range of sizes, in part because of changes in posture that distribute the stresses of walking differently, Roth said. But that clearly wasn't enough by itself.

The researchers also found that larger animals have a pronounced difference in stiffness between the pads on the forelimbs and the pads on the hind limbs. Bigger animals have relatively softer pads on their rear feet, whereas in smaller animals the front and rear are about the same stiffness.

Chi thinks the softer pads on the rear of the bigger animals may help them recover some energy from each step, and provide a bit more boost to their propulsion. (Think of the way a large predator folds up its forelimbs and launches itself with its hind legs.)

"It is as if the foot pads' stiffness is tuned to enhance how the animal moves and how strength is maintained in its bones," Roth said.

The research appears today in the Journal of the Royal Society, Interface. It was supported by the National Science Foundation.

Chi has new work under way that looks at the construction of the human heel in the same ways.

Karl Leif Bates | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>