Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The bigger the animal, the stiffer the 'shoes'

25.02.2010
If a Tiger's feet were built the same way as a mongoose's feet, they'd have to be about the size of a hippo's feet to support the big cat's weight. But they're not.

For decades, researchers have been looking at how different-sized legs and feet are put together across the four-legged animal kingdom, but until now they overlooked the "shoes," those soft pads on the bottom of the foot that bear the brunt of the animal's walking and running.

New research from scientists in Taiwan and at Duke University has found that the mechanical properties of the pads vary in predictable fashion as animals get larger. In short, bigger critters need stiffer shoes.

Kai-Jung Chi, an assistant professor of physics at National Chung Hsing University in Taiwan ran a series of carefully calibrated "compressive tests" on the footpads of carnivores that have that extra toe halfway up the foreleg, including dogs, wolves, domestic cats, leopards and hyenas. She was measuring the relative stiffness of the pads across species – how much they deformed under a given amount of compression.

"People hadn't looked at pads," said co-author V. Louise Roth, an associate professor of biology and evolutionary anthropology who was Chi's thesis adviser at Duke. "They've been looking at the bones and muscles, but not that soft tissue."

Whether running, walking or standing still, the bulk of the animal's weight is borne on that pillowy clover-shaped pad behind the four toes, the metapodial-phalangeal pad, or m-p pad for short. It's made from pockets of fatty tissue hemmed in by baffles of collagen. Chi carefully dissected these pads whole from the feet of deceased animals (none of which were euthanized for this study), so that they could be put in the strain meter by themselves without any surrounding structures.

Laid out on a graph, Chi's analysis of 47 carnivore species shows that the area of their m-p pads doesn't increase at the same rate as the body sizes. But the stiffness of pads does increase with size, and that's what keeps the larger animal's feet from being unwieldy.

The mass of the animal increases cubically with its greater size, but the feet don't scale up the same way. "A mouse and an elephant are made with the same ingredients," Roth said. "So how do you do that?"

Earlier research had found that the stresses on the long bones of the limbs stay fairly consistent over the range of sizes, in part because of changes in posture that distribute the stresses of walking differently, Roth said. But that clearly wasn't enough by itself.

The researchers also found that larger animals have a pronounced difference in stiffness between the pads on the forelimbs and the pads on the hind limbs. Bigger animals have relatively softer pads on their rear feet, whereas in smaller animals the front and rear are about the same stiffness.

Chi thinks the softer pads on the rear of the bigger animals may help them recover some energy from each step, and provide a bit more boost to their propulsion. (Think of the way a large predator folds up its forelimbs and launches itself with its hind legs.)

"It is as if the foot pads' stiffness is tuned to enhance how the animal moves and how strength is maintained in its bones," Roth said.

The research appears today in the Journal of the Royal Society, Interface. It was supported by the National Science Foundation.

Chi has new work under way that looks at the construction of the human heel in the same ways.

Karl Leif Bates | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>