Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Biacore system used in study to show potential drug target for sleeping sickness causing parasites

A Biacore™ system played a key role in the discovery of a drug target for the sleeping sickness parasite T. brucei (subsp. rhodesiense and gambiense).

The paper was published in Science, May 2008; 320: 677 – 681 and is the result of a collaboration between scientists at the Université Libre de Bruxelles, Belgium, and the University of Aarhus, Denmark.

A Biacore 3000 was used to examine binding parameters and properties of the parasite haptoglobin-hemoglobin (Hp-Hb) receptor TbHpHbR and its human functional analog CD163. The analysis showed that TbHpHbR binds the haptoglobin related protein-hemoglobin complex (Hpr-Hb) as well as Hp-Hb, unlike human CD163, suggesting that the parasite receptor is unable to discriminate between Hpr and Hp.

“The fact that the parasite actively uses a component of the host (hemoglobin) as a way to protect itself against the defenses of the host is an interesting facet of the biology of parasites. We discovered that the two subspecies of T. brucei that can infect humans both possess TbHpHpR,” said Dr. Etienne Pays, Université Libre de Bruxelles. “As the receptor shows equal affinity for the human-specific Hpr-Hb complex and the Hp-Hb complex, in contrast to the analogous human receptor CD163 which cannot bind Hpr-Hb, we deduce that TbHpHbR is a parasite-specific entry site for Hpr-Hb. Thus, the HprHb complex could be coupled to toxins and used as a novel drug against the parasite, targeting only the parasite and not the host.”

Dr. Søren Moestrup, University of Aarhus, commented: “Our next step is to contribute to the development of these new conjugate drugs, using the receptor as an entry point into the parasite. The assay using a Biacore system, developed during this investigation, will be essential for assessing binding of drug candidates to the receptor.”

Katie Odgaard | alfa
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>