Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BGI researchers uncover extensive RNA editing in a human transcriptome

13.02.2012
Study published in the journal Nature Biotechnology

Shenzhen, China – In a new study published online in Nature Biotechnology, researchers from BGI, the world's largest genomics organization, reported the evidence of extensive RNA editing in a human cell line by analysis of RNA-seq data, demonstrating the need for new robust methods to identify important post-transcriptional editing events.

RNA editing is a normal but not yet fully understood process in which small nucleotide changes occur after DNA has been transcribed into RNA. It is an integral step in generating diversity and plasticity of cellular RNA signature as a post-transciptional event that recodes hereditary information. RNA editing is an important area in the post-genomic era for its role in determining protein structure and function. It has become increasingly important in genetic research.

Last year, a study published in Science (Li, et al. Science, May 19, 2011) reported a large number of sequence differences between mRNA and DNA in the human transcriptome. This finding was startling because it implied that there might be a still undiscovered mechanism of 'RNA editing' that could disrupt the central dogma and affect our understanding of genetic variation. However, this view was strongly contested by other scientists because of the technical issue and lack of academic rigour, such as sequencing error or mis-mapping. In this latest study, BGI researchers developed a more rigorous pipeline for approaching these problems and answered some of the concerned questions, which contributed to paving way for the further studies of this field.

They obtained the whole-transcriptome data by RNA-seq from a lymphoblastoid cell line of a male Han Chinese individual (YH), whose genome sequence was previously reported as the first diploid genome of Han Chinese. RNA-seq, also known as "Whole Transcriptome Shotgun Sequencing", is a recently developed approach on transcriptome profiling that uses deep-sequencing technologies with the advantages of high-throughput data, low background, high sensitivity and repeatability. In a paper published in 2009 in Nature Reviews Genetics, RNA-seq is referred to as a revolutionary tool in transcriptomics.

"We used RNA-seq in the study to identify post-transcriptional editing events, and developed a computational and comprehensive pipeline to find the human RNA editing sites," said Zhiyu Peng, the leading author of the paper and Vice Director of Research & Cooperation Division of BGI. The pipeline was used to identify the extensive RNA editing from genome and whole transcriptome data by screening RNA-DNA differences of the same individual through successive quality control filters.

Through this pipeline, BGI researchers identified 22,688 RNA editing events, and found most editing events (~93%) convert adenosine (A) into inosine (I), which in turn is read as guanosine (G), in consistence with known editing mechanisms based on adenosine deaminase acting on RNA (ADAR). They also found 44 editing events in microRNAs (miRNA), suggesting there is a potential connection between RNA editing and miRNA-mediated regulation. Researchers also found in the study evidence of other types of nucleotide changes, but these were validated at lower rates.

"These findings demonstrate this multifilter molecular pipeline is an excellent approach in this study," said Peng. "With the multiple filters, false positive results can be controlled or eliminated while identifying RNA editing events, providing a more accurate and effective method to extensively analyze RNA editing. We now plan to apply this new methodology to larger-scale deep sequencing studies for more comprehensive analysis and profiling of editome, including studies with additional physiologically relevant samples."

"The evidence of extensive RNA editing identified in a human transcriptome underscores the necessity of an effective method to fully detect these events in order to further advance our understanding of human development and normal pathophysiological condition," said Jun Wang, Executive Director of BGI. "With continual improvement of the new approach, we believe this could be achieved in the near future."

About BGI

BGI was founded in Beijing, China on September 9th, 1999 with the mission of being a premier scientific partner to the global research community. The goal of BGI is to make leading-edge genomic science highly accessible through its investment in infrastructure that leverages the best available technology, economies of scale, and expert bioinformatics resources. BGI, and its affiliates, BGI Americas, based in Cambridge, MA and BGI Europe, based in Copenhagen. Denmark, have established partnerships and collaborations with leading academic and government research institutions as well as global biotechnology and pharmaceutical companies, supporting a variety of disease, agricultural, environmental, and related applications.

BGI has established a proven track record of excellence, delivering results with high efficiency and accuracy for innovative, high-profile research which has generated over 170 publications in top-tier journals such as Nature and Science. These accomplishments include sequencing one percent of the human genome for the International Human Genome Project, contributing 10 percent to the International Human HapMap Project, carrying out research to combat SARS and German deadly E. coli, playing a key role in the Sino-British Chicken Genome Project, and completing the sequence of the rice genome, the silkworm genome, the first Asian diploid genome, the potato genome, and, most recently, 1000 genomes and human Gut metagenome. For more information about BGI, please visit www.genomics.cn.

Contact Information:

Zhiyu Peng
Vice Director of Research & Cooperation Division
BGI
pengzhiyu@genomics.cn
www.genomics.cn
Bicheng Yang
Public Communication Officer
BGI
+86-755-82639701
yangbicheng@genomics.cn
www.genomics.cn

Jia Liu | EurekAlert!
Further information:
http://www.genomics.cn

Further reports about: BGI Biotechnology Chinese herbs Cooperation DNA Human vaccine Nature Immunology RNA RNA-seq

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>