Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BGI reports the completed sequence of foxtail millet genome

14.05.2012
The latest study was published online in Nature Biotechnology
BGI, the world's largest genomics organization, in cooperation with Zhangjiakou Academy of Agricultural Science, has completed the genome sequence and analysis of foxtail millet (Setaria italica), the second-most widely planted species of millet. This study provides an invaluable resource for the study and genetic improvement of foxtail millet and millet crops at a genome-wide level. Results of the latest study were published online today in Nature Biotechnology.

Foxtail millet is an important cereal crop providing food and feed in semi-arid areas. It is the top-one crop in ancient China. It promises to serve as an important model for comparative genomics and functional gene studies, due to its small genome size (~490M), self-pollination, rich genetic diversity (~6000 varieties), complete collection of germplasm, and the availability of efficient transformation platforms. It is also evolutionarily close to several important biofuel grasses, such as switchgrass and napier grass.

"The lower yield of traditional cultivars has largely limited cultivation and utilization of foxtail millet." said Dr. Gengyun Zhang, Vice President of BGI. "Hybrid cultivars, recently developed by Professor Zhihai Zhao in Zhangjiakou Agricultural Academy of Science, doubled the yield of foxtail millet. I expect that the results of this study could set an example of applying the genome sequence to better understanding and quicker developing new varieties of a neglected crop with higher yield, better grain quality and stress tolerance."

In this study, researchers from BGI carried out next-generation sequencing and de novo assembly for "Zhang gu", one strain of foxtail millet from Northern China. The final genome assembly was 423 Mb, and 38,801 protein-coding genes have been predicted, of which ~81% were expressed. They also developed a high density genetic linkage map using a set of genetic markers identified by resequencing another strain named "A2" and an F2 population of "Zhang gu" crossing A2. A2 is the widely used female strain of hybrid foxtail millet.

Comparing the foxtail millet genome and rice genome, researchers found the rules and changing tendency of the foxtail millet chromosomes, which are important for understanding the millet genome evolution. "We found nine foxtail millet chromosomes were formed after three chromosomal reshuffling events." said Dr. Zhang, "Of the three events, two occurred after divergence of foxtail millet from rice, followed by a specific reshuffling after divergence of millet from sorghum."

C4 plants are better adapted than C3 plants in environments with higher daytime temperature, intense sunlight, drought, or nitrogen or CO2 limitation. Foxtail millet is a diploid C4 panicoid crop species. With its genome available, researchers comprehensively analyzed the evolution of several key genes in C4 photosynthesis pathway. Results indicated that all the genes involved in C4 carbon fixation pathway also existed in C3 plants. Thus, researchers predicted that the emergence of C4 pathway could result from expressional and/or functional modifications of these genes.

The genome sequence of foxtail millet could facilitate mapping of quantitative trait loci. In this study, researchers used the foxtail millet genome to aid identification of herbicide resistant genes, and they accurately identified the gene for sethoxydim resistance.

"The decoding of whole genome sequence is an essential and important step to reveal the secrets of genetic control of crops, which could serve as an important platform for biological studies and breeding. " added by Dr. Zhang.

About BGI

BGI was founded in Beijing, China on September 9th, 1999 with the mission of being a premier scientific partner to the global research community. The goal of BGI is to make leading-edge genomic science highly accessible through its investment in infrastructure that leverages the best available technology, economies of scale, and expert bioinformatics resources. BGI, and its affiliates, BGI Americas, based in Cambridge, MA and BGI Europe, based in Copenhagen. Denmark, have established partnerships and collaborations with leading academic and government research institutions as well as global biotechnology and pharmaceutical companies, supporting a variety of disease, agricultural, environmental, and related applications.

BGI has established a proven track record of excellence, delivering results with high efficiency and accuracy for innovative, high-profile research which has generated over 170 publications in top-tier journals such as Nature and Science. These accomplishments include sequencing one percent of the human genome for the International Human Genome Project, contributing 10 percent to the International Human HapMap Project, carrying out research to combat SARS and German deadly E. coli, playing a key role in the Sino-British Chicken Genome Project, and completing the sequence of the rice genome, the silkworm genome, the first Asian diploid genome, the potato genome, and, most recently, 1000 genomes and human Gut metagenome. For more information about BGI, please visit www.genomics.cn.

Contact Information:

Gengyun Zhang
Vice President
BGI
zhanggengyun@genomics.cn
Bicheng Yang
Public Communication Officer
BGI
+86-755-82639701
yangbicheng@genomics.cn

Jia Liu | EurekAlert!
Further information:
http://www.genomics.cn

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>