Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


BGI reports the completed sequence of foxtail millet genome

The latest study was published online in Nature Biotechnology
BGI, the world's largest genomics organization, in cooperation with Zhangjiakou Academy of Agricultural Science, has completed the genome sequence and analysis of foxtail millet (Setaria italica), the second-most widely planted species of millet. This study provides an invaluable resource for the study and genetic improvement of foxtail millet and millet crops at a genome-wide level. Results of the latest study were published online today in Nature Biotechnology.

Foxtail millet is an important cereal crop providing food and feed in semi-arid areas. It is the top-one crop in ancient China. It promises to serve as an important model for comparative genomics and functional gene studies, due to its small genome size (~490M), self-pollination, rich genetic diversity (~6000 varieties), complete collection of germplasm, and the availability of efficient transformation platforms. It is also evolutionarily close to several important biofuel grasses, such as switchgrass and napier grass.

"The lower yield of traditional cultivars has largely limited cultivation and utilization of foxtail millet." said Dr. Gengyun Zhang, Vice President of BGI. "Hybrid cultivars, recently developed by Professor Zhihai Zhao in Zhangjiakou Agricultural Academy of Science, doubled the yield of foxtail millet. I expect that the results of this study could set an example of applying the genome sequence to better understanding and quicker developing new varieties of a neglected crop with higher yield, better grain quality and stress tolerance."

In this study, researchers from BGI carried out next-generation sequencing and de novo assembly for "Zhang gu", one strain of foxtail millet from Northern China. The final genome assembly was 423 Mb, and 38,801 protein-coding genes have been predicted, of which ~81% were expressed. They also developed a high density genetic linkage map using a set of genetic markers identified by resequencing another strain named "A2" and an F2 population of "Zhang gu" crossing A2. A2 is the widely used female strain of hybrid foxtail millet.

Comparing the foxtail millet genome and rice genome, researchers found the rules and changing tendency of the foxtail millet chromosomes, which are important for understanding the millet genome evolution. "We found nine foxtail millet chromosomes were formed after three chromosomal reshuffling events." said Dr. Zhang, "Of the three events, two occurred after divergence of foxtail millet from rice, followed by a specific reshuffling after divergence of millet from sorghum."

C4 plants are better adapted than C3 plants in environments with higher daytime temperature, intense sunlight, drought, or nitrogen or CO2 limitation. Foxtail millet is a diploid C4 panicoid crop species. With its genome available, researchers comprehensively analyzed the evolution of several key genes in C4 photosynthesis pathway. Results indicated that all the genes involved in C4 carbon fixation pathway also existed in C3 plants. Thus, researchers predicted that the emergence of C4 pathway could result from expressional and/or functional modifications of these genes.

The genome sequence of foxtail millet could facilitate mapping of quantitative trait loci. In this study, researchers used the foxtail millet genome to aid identification of herbicide resistant genes, and they accurately identified the gene for sethoxydim resistance.

"The decoding of whole genome sequence is an essential and important step to reveal the secrets of genetic control of crops, which could serve as an important platform for biological studies and breeding. " added by Dr. Zhang.

About BGI

BGI was founded in Beijing, China on September 9th, 1999 with the mission of being a premier scientific partner to the global research community. The goal of BGI is to make leading-edge genomic science highly accessible through its investment in infrastructure that leverages the best available technology, economies of scale, and expert bioinformatics resources. BGI, and its affiliates, BGI Americas, based in Cambridge, MA and BGI Europe, based in Copenhagen. Denmark, have established partnerships and collaborations with leading academic and government research institutions as well as global biotechnology and pharmaceutical companies, supporting a variety of disease, agricultural, environmental, and related applications.

BGI has established a proven track record of excellence, delivering results with high efficiency and accuracy for innovative, high-profile research which has generated over 170 publications in top-tier journals such as Nature and Science. These accomplishments include sequencing one percent of the human genome for the International Human Genome Project, contributing 10 percent to the International Human HapMap Project, carrying out research to combat SARS and German deadly E. coli, playing a key role in the Sino-British Chicken Genome Project, and completing the sequence of the rice genome, the silkworm genome, the first Asian diploid genome, the potato genome, and, most recently, 1000 genomes and human Gut metagenome. For more information about BGI, please visit

Contact Information:

Gengyun Zhang
Vice President
Bicheng Yang
Public Communication Officer

Jia Liu | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>