Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Beyond Elastic: Organic crystal demonstrates superelasticity


Not only rubber is elastic: There is also another, completely different form of elasticity known as superelasticity. This phenomenon results from a change in crystal structure and was previously only found in alloys and certain inorganic materials. A Japanese scientist has now introduced the first superelastic organic compound in the journal Angewandte Chemie.

Superelasticity, also called “pseudoelasticity”, is the ability of special materials that have undergone extensive deformation to return to their original shape when the pressure is released.

This allows some alloys to be stretched out about ten times more than common spring steel without being permanently deformed. The mechanism is different from that involved in the normal elasticity of rubbery substances. In rubber, the polymer chains are stretched out through strain—no compression is possible.

In superelastic materials, mechanical stress triggers a change in the crystal structure—without the individual atoms changing places. When the stress is removed, the materials return to their former structure. Such substances are interesting candidates for use as building materials with “shape memory” in applications such as “self-repairing” vehicle parts.

Superelastic materials other than metal alloys and ceramics have not appeared for over 80 years since the first report of superelasticity in metal alloys. This phenomenon was previously unknown in organic materials. Satoshi Takamizawa of Yokohama City University has now found superelasticity in an organic crystal for the first time: terepthalamide crystals exhibit superelastic behavior with surprisingly little application of force.

Shear stress on a specific surface of the crystal initially causes the crystal to bend, and then transition to a different crystal phase. The more pressure that is applied, the more this spreads throughout the crystal.

When the tension is released, the phase transition moves back across the crystal, which returns to its original structure. Takamizawa and one of his students were able to repeat this superelastic deformation 100 times without any signs of material fatigue.

The crystal consists of individual sheets of slanted terepthalamide molecules (AAAAA sheet arrangement). Shear stress causes the angles of the molecules within the layers to change, which results in a more densely packed A’BA’BA’B sheet arrangement. The layers are held together by a network of hydrogen bridge bonds, which break under pressure and rearrange during the phase transition.

Possible applications of organic superelastic materials include joints made of a single component and elements for dampening vibrations. In medicine, implants made from these types of materials could be deformed for easy introduction and then return to the desired shape and size when they reach the desired location.

About the Author

Dr. Satoshi Takamizawa is Professor of Inorganic Chemistry at Yokohama City University. His main interest is crystal function in coordination compounds and related organic and inorganic materials.

Author: Satoshi Takamizawa, Yokohama City University (Japan),

Title: A Superelastic Crystal of Terephthalamide

Angewandte Chemie International Edition, Permalink to the article:

Dr. Satoshi Takamizawa | Angewandte Chemie
Further information:

Further reports about: Organic compounds function implants inorganic materials pressure structure substances transition

More articles from Life Sciences:

nachricht Molecular trigger for Cerebral Cavernous Malformation identified
26.11.2015 | EMBO - excellence in life sciences

nachricht Peering into cell structures where neurodiseases emerge
26.11.2015 | University of Delaware

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Using sphere packing models to explain the structure of forests

26.11.2015 | Ecology, The Environment and Conservation

Dimensionality transition in a newly created material

26.11.2015 | Materials Sciences

Revealing glacier flow with animated satellite images

26.11.2015 | Earth Sciences

More VideoLinks >>>