Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beyond Elastic: Organic crystal demonstrates superelasticity

07.05.2014

Not only rubber is elastic: There is also another, completely different form of elasticity known as superelasticity. This phenomenon results from a change in crystal structure and was previously only found in alloys and certain inorganic materials. A Japanese scientist has now introduced the first superelastic organic compound in the journal Angewandte Chemie.

Superelasticity, also called “pseudoelasticity”, is the ability of special materials that have undergone extensive deformation to return to their original shape when the pressure is released.

This allows some alloys to be stretched out about ten times more than common spring steel without being permanently deformed. The mechanism is different from that involved in the normal elasticity of rubbery substances. In rubber, the polymer chains are stretched out through strain—no compression is possible.

In superelastic materials, mechanical stress triggers a change in the crystal structure—without the individual atoms changing places. When the stress is removed, the materials return to their former structure. Such substances are interesting candidates for use as building materials with “shape memory” in applications such as “self-repairing” vehicle parts.

Superelastic materials other than metal alloys and ceramics have not appeared for over 80 years since the first report of superelasticity in metal alloys. This phenomenon was previously unknown in organic materials. Satoshi Takamizawa of Yokohama City University has now found superelasticity in an organic crystal for the first time: terepthalamide crystals exhibit superelastic behavior with surprisingly little application of force.

Shear stress on a specific surface of the crystal initially causes the crystal to bend, and then transition to a different crystal phase. The more pressure that is applied, the more this spreads throughout the crystal.

When the tension is released, the phase transition moves back across the crystal, which returns to its original structure. Takamizawa and one of his students were able to repeat this superelastic deformation 100 times without any signs of material fatigue.

The crystal consists of individual sheets of slanted terepthalamide molecules (AAAAA sheet arrangement). Shear stress causes the angles of the molecules within the layers to change, which results in a more densely packed A’BA’BA’B sheet arrangement. The layers are held together by a network of hydrogen bridge bonds, which break under pressure and rearrange during the phase transition.

Possible applications of organic superelastic materials include joints made of a single component and elements for dampening vibrations. In medicine, implants made from these types of materials could be deformed for easy introduction and then return to the desired shape and size when they reach the desired location.

About the Author

Dr. Satoshi Takamizawa is Professor of Inorganic Chemistry at Yokohama City University. His main interest is crystal function in coordination compounds and related organic and inorganic materials.

Author: Satoshi Takamizawa, Yokohama City University (Japan), http://nanochem.sci.yokohama-cu.ac.jp/

Title: A Superelastic Crystal of Terephthalamide

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201311014

Dr. Satoshi Takamizawa | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

Further reports about: Organic compounds function implants inorganic materials pressure structure substances transition

More articles from Life Sciences:

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>