Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New beta-blocker to offer hope to heart and lung sufferers

29.08.2008
Researchers at The University of Nottingham have been awarded £2.8 million by the Wellcome Trust to develop a new drug that could ease the suffering of hundreds of thousands of heart disease patients who are unable to take beta-blockers.

In the UK, 2.6 million people suffer from heart disease and most are able to have their symptoms effectively managed with the prescription of beta-blocker drugs which stop adrenaline from making the heart work too hard.

However, a major side effect of beta-blockers is that they make the symptoms of asthma and other breathing problems worse, so that around 300,000 patients in the UK who also suffer from respiratory conditions are prevented from taking them.

Now, a team of scientists from the University’s Schools of Biomedical Sciences and Pharmacy will use the Wellcome Trust’s funding, made under the Seeding Drug Discovery initiative, to conduct a three-year study to develop a modified type of beta-blocker that will treat heart disease and angina without exacerbating any underlying respiratory problems..

If successful, the new drug could become the general medicine of choice for all heart patients because its targeted action will lead to a significant reduction in overall side effects.

Even the best currently available beta-blockers are poor at discriminating between the heart and lungs, causing the muscles in the lungs to tighten and making breathing more difficult in some patients who have a pre-existing lung complaint.

In patients suffering from asthma, in which environmental factors cause muscle contractions leading to a narrowing of the airway, taking these medicines can trigger an attack or, even if tolerated enough to be taken regularly, can stop other asthma drugs from working.

Doctors are also extremely wary in prescribing beta-blockers for patients suffering from heart disease and chronic obstructive pulmonary disease (COPD), a progressive condition which causes the destruction of lung tissue and increased mucus production, because any reduction in respiratory function that may be caused by the drugs could have a major impact on symptoms.

The Nottingham scientists have already developed a molecule that is much more effective at discriminating between the heart and lungs than current drugs. The funding will allow them to carry out further studies to improve the molecule to ensure that it is able to target the heart cells more effectively — therefore directing the therapeutic effect only to the heart and not the lungs. The aim is that the resulting drug will be long-lasting and could be taken orally.

Leading the research, Dr Jill Baker from the School of Biomedical Sciences said: “Once developed, this molecule will cause much less wheezing and shortness of breath and should be able to be given safely to the hundreds of thousands of patients with both heart and lung diseases. Furthermore, because it will have so few side effects, it has the potential to become the beta-blocker of choice for all heart patients.”

Dr Ted Bianco, Director of Technology Transfer at the Wellcome Trust, said: “We know that beta-blockers save lives in patients with heart disease, so making them safe for those unlucky enough to have a respiratory disorder as well is a clinical imperative. I applaud Jill Baker for questioning why beta-blockers should remain contraindicated for so many of her patients, and being stirred to correct this with an incisive programme of work. In the best traditions of medical research, this endeavour was born out of a problem encountered at the sharp end of clinical practice.”

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk
http://www.wellcome.ac.uk

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>