Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BESC researchers tap into genetic reservoir of heat-loving bacteria

03.07.2012
The identification of key proteins in a group of heat-loving bacteria by researchers at the Department of Energy's BioEnergy Science Center could help light a fire under next-generation biofuel production.

Scientists have long been on the hunt for cost-effective ways to break down complex plant material such as switchgrass in order to access sugars that are fermented to make biofuels. Conventional processes involve the addition of commercially produced enzymes to break down the cellulose. BESC scientists are exploring alternative options, including the use of certain bacteria that are naturally capable of deconstructing plant biomass in their environment.


Researchers at the Department of Energy’s BioEnergy Science Center analyzed the genomes of eight species of bacteria from the genus Caldicellulosiruptor, which could aid in the production of next-generation biofuels.

To better understand the mechanisms behind this microbial ability, a team of researchers from North Carolina State University, Oak Ridge National Laboratory and the University of Georgia analyzed the genomes of eight species of bacteria from the genus Caldicellulosiruptor. These bacterial species, found in globally diverse sites from New Zealand to Iceland to Russia, can degrade plant biomass at extremely high temperatures.

"Earlier, we had found that not all members of this group were able to equally degrade cellulose as others were," said NCSU's Sara Blumer-Schuette. "The main aim of this project was to figure what the true determinants were for strongly celluloytic bacteria from this genus — what made them celluloytic versus the others."

By comparing the genomes of eight related yet variable species, the research team pinpointed which genes were unique to species with the ability to break down cellulose. The researchers, whose results are published in the Journal of Bacteriology, conducted additional analysis using proteomics to verify how these particular genes are expressed into proteins that perform cellulose degradation.

The team's research uncovered a previously uncharacterized group of proteins determined to be adhesins, which help the bacteria grab onto a chunk of plant material to more efficiently break it apart. This finding further clarified why certain bacterial species in the genus are better than others at deconstructing plant material.

"Previously, we knew these bacteria would secrete enzymes that would then freely diffuse into their environment," Blumer-Schuette said. "We assumed that the enzymes would by chance stick to either cellulose or a piece of biomass in their environment and start to degrade it. Now we're seeing that a lot of proteins are involved in maintaining a tight interface between the bacterium and cellulose."

A key challenge in making the production of lignocellulosic biofuels cost-effective is improving the efficiency of access to the sugars imprisoned in a plant's cell wall.

"Yet nature, in the form of the microbes described here, has been doing this very effectively all along," said Paul Gilna, director of BESC, of which the authors are members. "If we can understand the processes already in place with cellulose-degrading organisms such as the Caldicellulosiruptor microbes described here, we can make huge leaps in learning how to harness microbes to digest plant biomass and ferment sugars into biofuels at the same time."

Coauthors of the article, which has been published online by the Journal of Bacteriology, include NCSU's Sara Blumer-Schuette, Jeffrey Zurawski, Inci Ozdemir and Robert Kelly; ORNL's Richard Giannone, Scott Hamilton-Brehm, James Elkins, Frank Larimer, Miriam Land, Loren Hauser, Robert Cottingham and Robert Hettich; and UGA's Qin Ma, Yanbin Yin, Ying Xu, Irina Kataeva, Farris Poole and Michael Adams.

BESC is one of three DOE Bioenergy Research Centers established by the DOE's Office of Science in 2007. The centers support multidisciplinary, multi-institutional research teams pursuing the fundamental scientific breakthroughs needed to make production of cellulosic biofuels, or biofuels from nonfood plant fiber, cost-effective on a national scale. The three centers are coordinated at ORNL, Lawrence Berkeley National Laboratory and the University of Wisconsin-Madison in partnership with Michigan State University.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science. DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov.

Morgan McCorkle | EurekAlert!
Further information:
http://www.ornl.gov
http://www.ornl.gov/info/press_releases/get_press_release.cfm?ReleaseNumber=mr20120702-00

More articles from Life Sciences:

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

nachricht Exposure to fracking chemicals and wastewater spurs fat cell development
22.06.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

New cellular pathway helps explain how inflammation leads to artery disease

22.06.2018 | Life Sciences

When fluid flows almost as fast as light -- with quantum rotation

22.06.2018 | Physics and Astronomy

Exposure to fracking chemicals and wastewater spurs fat cell development

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>