Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BESC researchers tap into genetic reservoir of heat-loving bacteria

03.07.2012
The identification of key proteins in a group of heat-loving bacteria by researchers at the Department of Energy's BioEnergy Science Center could help light a fire under next-generation biofuel production.

Scientists have long been on the hunt for cost-effective ways to break down complex plant material such as switchgrass in order to access sugars that are fermented to make biofuels. Conventional processes involve the addition of commercially produced enzymes to break down the cellulose. BESC scientists are exploring alternative options, including the use of certain bacteria that are naturally capable of deconstructing plant biomass in their environment.


Researchers at the Department of Energy’s BioEnergy Science Center analyzed the genomes of eight species of bacteria from the genus Caldicellulosiruptor, which could aid in the production of next-generation biofuels.

To better understand the mechanisms behind this microbial ability, a team of researchers from North Carolina State University, Oak Ridge National Laboratory and the University of Georgia analyzed the genomes of eight species of bacteria from the genus Caldicellulosiruptor. These bacterial species, found in globally diverse sites from New Zealand to Iceland to Russia, can degrade plant biomass at extremely high temperatures.

"Earlier, we had found that not all members of this group were able to equally degrade cellulose as others were," said NCSU's Sara Blumer-Schuette. "The main aim of this project was to figure what the true determinants were for strongly celluloytic bacteria from this genus — what made them celluloytic versus the others."

By comparing the genomes of eight related yet variable species, the research team pinpointed which genes were unique to species with the ability to break down cellulose. The researchers, whose results are published in the Journal of Bacteriology, conducted additional analysis using proteomics to verify how these particular genes are expressed into proteins that perform cellulose degradation.

The team's research uncovered a previously uncharacterized group of proteins determined to be adhesins, which help the bacteria grab onto a chunk of plant material to more efficiently break it apart. This finding further clarified why certain bacterial species in the genus are better than others at deconstructing plant material.

"Previously, we knew these bacteria would secrete enzymes that would then freely diffuse into their environment," Blumer-Schuette said. "We assumed that the enzymes would by chance stick to either cellulose or a piece of biomass in their environment and start to degrade it. Now we're seeing that a lot of proteins are involved in maintaining a tight interface between the bacterium and cellulose."

A key challenge in making the production of lignocellulosic biofuels cost-effective is improving the efficiency of access to the sugars imprisoned in a plant's cell wall.

"Yet nature, in the form of the microbes described here, has been doing this very effectively all along," said Paul Gilna, director of BESC, of which the authors are members. "If we can understand the processes already in place with cellulose-degrading organisms such as the Caldicellulosiruptor microbes described here, we can make huge leaps in learning how to harness microbes to digest plant biomass and ferment sugars into biofuels at the same time."

Coauthors of the article, which has been published online by the Journal of Bacteriology, include NCSU's Sara Blumer-Schuette, Jeffrey Zurawski, Inci Ozdemir and Robert Kelly; ORNL's Richard Giannone, Scott Hamilton-Brehm, James Elkins, Frank Larimer, Miriam Land, Loren Hauser, Robert Cottingham and Robert Hettich; and UGA's Qin Ma, Yanbin Yin, Ying Xu, Irina Kataeva, Farris Poole and Michael Adams.

BESC is one of three DOE Bioenergy Research Centers established by the DOE's Office of Science in 2007. The centers support multidisciplinary, multi-institutional research teams pursuing the fundamental scientific breakthroughs needed to make production of cellulosic biofuels, or biofuels from nonfood plant fiber, cost-effective on a national scale. The three centers are coordinated at ORNL, Lawrence Berkeley National Laboratory and the University of Wisconsin-Madison in partnership with Michigan State University.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science. DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov.

Morgan McCorkle | EurekAlert!
Further information:
http://www.ornl.gov
http://www.ornl.gov/info/press_releases/get_press_release.cfm?ReleaseNumber=mr20120702-00

More articles from Life Sciences:

nachricht Rutgers scientists discover 'Legos of life'
23.01.2018 | Rutgers University

nachricht Researchers identify a protein that keeps metastatic breast cancer cells dormant
23.01.2018 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>