Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Berkeley Lab Scientists Take a Look at Systems Biology and Cellular Networking

18.03.2011
Systems biology is a holistic approach to the study of how a living organism emerges from the interactions of the individual elements that make up its constituent cells.

Embracing a broad range of disciplines, this field of science that is just beginning to come into public prominence holds promise for advances in a number of important areas, including safer, more effective pharmaceuticals, improved environmental remediation, and clean, green, sustainable energy.

However, the most profound impact of systems biology, according to one of its foremost practitioners, is that it might one day provide an answer to the central question: What is life?

Adam Arkin, director of the Physical Biosciences Division of the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory and a leading computational biologist, is the corresponding author of an essay in the journal Cell which describes in detail key technologies and insights that are advancing systems biology research. The paper is titled “Network News:Innovations in 21st Century Systems Biology.” Co-authoring the article is David Schaffer, a chemical engineer with Berkeley Lab’s Physical Biosciences Division. Both Arkin and Schaffer also hold appointments with the University of California (UC) Berkeley.

“System biology aims to understand how individual elements of the cell generate behaviors that allow survival in changeable environments, and collective cellular organization into structured communities,” Arkin says. “Ultimately, these cellular networks assemble into larger population networks to form large-scale ecologies and thinking machines, such as humans.”

In their essay, Arkin and Schaffer argue that the ideas behind systems biology originated more than a century ago and that the field should be viewed as “a mature synthesis of thought about the implications of biological structure and its dynamic organization.” Research into the evolution, architecture, and function of cells and cellular networks in combination with ever expanding computational power has led to predictive genome-scale regulatory and metabolic models of organisms. Today systems biology is ready to “bridge the gap between correlative analysis and mechanistic insights” that can transform biology from a descriptive science to an engineering science.

Adam Arkin (Photo by Roy Kaltschmidt, Berkeley Lab Public Affairs)
Discoveries in systems biology, the authors say, can generally be divided between those that relied on a “mechanistic approach to causal relationships,” and those that relied on “large-scale correlation analysis.” The results of these discoveries can also be categorized according to whether they primarily pertained to the principles behind cellular network organization, or to predictions about the behavior of these networks.

“As systems biology matures, the number of studies linking correlation with causation and principles with prediction will continue to grow,” Schaffer says. “Advances in measurement technologies that enable large-scale experiments across an array of parameters and conditions will increasingly meld these correlative and causal approaches, including correlative analyses leading to mechanistic hypothesis testing, as well as causal models empowered with sufficient data to make predictions.”

As the complete genomes of more organisms are sequenced, and measurement and genetic manipulation technologies are improved, scientists will be able to compare systems across a broader expanse of phylogenetic trees. This, Arkin and Schaffer say, will enhance our understanding of mechanistic features that are necessary for function and evolution.

“The increasing integration of experimental and computational technologies will thus corroborate, deepen, and diversify the theories that the earliest systems biologists used logic to infer,” Arkin says. “This will thereby inch us ever closer to answering the What is Life question.”

The systems biology research cited in this essay by Arkin and Schaffer was supported by DOE’s Office of Science (Biological and Environmental Research), and by the National Institutes of Health.

Lawrence Berkeley National Laboratory is a U.S. Department of Energy (DOE) national laboratory managed by the University of California for the DOE Office of Science. Berkeley Lab provides solutions to the world’s most urgent scientific challenges including sustainable energy, climate change, human health, and a better understanding of matter and force in the universe. It is a world leader in improving our lives through team science, advanced computing, and innovative technology. Visit our Website at www.lbl.gov

Additional Information

For more about Berkeley Lab’s Physical Biosciences Division, visit the Website at http://pbd.lbl.gov/

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov
http://newscenter.lbl.gov/feature-stories/2011/03/17/systems-biology-and-cellular-networking/

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>