Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Belly fat or hip fat -- it really is all in your genes

17.05.2010
The age-old question of why men store fat in their bellies and women store it in their hips may have finally been answered: Genetically speaking, the fat tissue is almost completely different.

"We found that out of about 40,000 mouse genes, only 138 are commonly found in both male and female fat cells," said Dr. Deborah Clegg, assistant professor of internal medicine at UT Southwestern Medical Center and senior author of the study appearing in the International Journal of Obesity. "This was completely unexpected. We expected the exact opposite – that 138 would be different and the rest would be the same between the sexes."

The study involved mice, which distribute their fat in a sexually dimorphic pattern similar to humans.

"Given the difference in gene expression profiles, a female fat tissue won't behave anything like a male fat tissue and vice versa," Dr. Clegg said. "The notion that fat cells between males and females are alike is inconsistent with our findings."

In humans, men are more likely to carry extra weight around their guts while pre-menopausal women store it in their butts, thighs and hips. The bad news for men is that belly, or visceral, fat has been associated with numerous obesity-related diseases including diabetes and heart disease. Women, on the other hand, are generally protected from these obesity-related disorders until menopause, when their ovarian hormone levels drop and fat storage tends to shift from their rear ends to their waists.

"Although our new findings don't explain why women begin storing fat in their bellies after menopause, the results do bring us a step closer to understanding the mechanisms behind the unwanted shift," Dr. Clegg said.

For this study, researchers used a microarray analysis to determine whether male fat cells and female fat cells were different between the waist and hips and if they were different based on gender at a genetic level.

Because the fat distribution patterns of male and female mice are similar to those of humans, the researchers used the animals to compare genes from the belly and hip fat pads of male mice, female mice and female mice whose ovaries had been removed – a condition that closely mimics human menopause. Waist and hip fat (subcutaneous fat) generally accumulates outside the muscle wall, whereas belly fat (visceral fat), a major health concern in men and postmenopausal women, develops around the internal organs.

In addition to the genetic differences among fat tissues, the researchers found that male mice that consumed a high-fat diet for 12 weeks gained more weight than female mice on the same diet. The males' fat tissue, particularly their belly fat, became highly inflamed, while the females had lower levels of genes associated with inflammation. The female mice whose ovaries had been removed, however, gained weight on the high-fat diet more like the males and deposited this fat in their bellies, also like the males.

"The fat of the female mice whose ovaries had been removed was inflamed and was starting to look like the unhealthy male fat," Dr. Clegg said. "However, estrogen replacement therapy in the mice reduced the inflammation and returned their fat distribution to that of mice with their ovaries intact."

Dr. Clegg said the results suggest that hormones made by the ovaries may be critical in determining where fat is deposited. Her overall goal is to determine how fat tissue is affected by sex hormones and whether it would be possible to develop a "designer" hormone replacement therapy that protected postmenopausal women from belly fat and related diseases such as metabolic syndrome.

Researchers from Oregon Health and Science University, Boston University School of Medicine and the Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University also contributed to the study. The study was supported by the Society for Women's Health Research.

Visit http://www.utsouthwestern.org/nutrition to learn more about clinical services in nutrition at UT Southwestern, including treatments for diabetes, kidney disease and obesity.

This news release is available on our World Wide Web home page at www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via e-mail, subscribe at www.utsouthwestern.edu/receivenews

Kristen Holland Shear | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht New technology offers fast peptide synthesis
28.02.2017 | Massachusetts Institute of Technology

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>