Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The beginnings of the brain

16.05.2011
A single protein is sufficient to switch on the various genes that kick off the development of the embryonic nervous system

All of the tissues and organs of the body arise from one of three embryonic precursors: the ectoderm, mesoderm and endoderm. The ectoderm contributes to several tissues, including the nervous system and the skin, but some studies have suggested that development into neurons requires nothing more than the absence of specific inhibitory signals.

This phenomenon has led biologists to formulate what is called the ‘neural default model’. “The simplest interpretation of the neural default model is that the neural fate is a ‘left-over’ choice, passively determined by the elimination of other pathways of differentiation,” explains Yoshiki Sasai of the RIKEN Center for Developmental Biology in Kobe. This model fails to address the identities of the factors that actively drive neuronal development, but new findings from Sasai and colleagues have spotlighted a single protein that appears to set this process into motion[1].

His team had previously designed a culture system that promotes neural differentiation of mouse embryonic stem (mES) cells[2], and they used this technique to identify genes that are specifically switched on in these cells. They identified one intriguing candidate, Zfp521, which activated several other genes involved in neural development, even when the mES cells were cultured in the presence of factors that would normally curb this process (Fig. 1).

When Sasai and colleagues examined expression in developing mouse embryos, they noted that the spatial and temporal distribution of Zfp521 activity closely mirrored known sites of neural differentiation. Likewise, early stage mouse embryos injected with mES cells in which Zfp521 expression was abrogated largely failed to incorporate these cells into the developing nervous system. By systematically identifying the genes whose expression is disrupted in the absence of Zfp521, the researchers were able to determine that this gene acts as a driver for the maturation of ectodermal cells into neuroectoderm, the developmental stage that immediately precedes formation of actual neural progenitors.

“The most important message of this study is that the neural fate is acquired by an active determination process,” says Sasai. Understanding how this developmental switch works could ultimately provide scientists with a powerful tool for efficiently transforming human stem cells into mature nervous tissue suitable for experimental use or even transplantation, although it remains to be determined whether human ES cells obey the exact same principles. “We have preliminary data showing a conserved essential role for Zfp521 in both species,” says Sasai, “but we need to analyze the similarities and differences in greater depth.”

The corresponding author for this highlight is based at the Laboratory for Organogenesis and Neurogenesis, RIKEN Center for Developmental Biology

Journal information

[1] Kamiya, D., Banno, S., Sasai, N., Ohgushi, M., Inomata, H., Watanabe, K., Kawada, M., Yakura, R., Kiyonari, H., Nakao, K. et al. Intrinsic transition of embryonic stem-cell differentiation into neural progenitors. Nature 470, 503–509 (2011).

[2] Watanabe, K., Kamiya, D., Nishiyama, A., Katayama, T., Nozaki, S., Kawasaki, H., Watanabe, Y., Mizuseki, K. & Sasai, Y. Directed differentiation of telencephalic precursors from embryonic stem cells. Nature Neuroscience 8, 288–296 (2005).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>