Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beewolves Protect their Offspring With Antibiotics

01.03.2010
Digger wasp larvae use bacteria against infections

Digger wasps of the genus Philanthus, so-called beewolves, house beneficial bacteria on their cocoons that guarantee protection against harmful microorganisms. Scientists of the Max Planck Institute for Chemical Ecology in Jena teamed up with researchers at the University of Regensburg and the Jena Leibniz Institute for Natural Product Research - Hans-Knoell-Institute - and discovered that bacteria of the genus Streptomyces produce a cocktail of nine different antibiotics and thereby fend off invading pathogens.


The beewolf larva hibernates for several months in its cocoon before the adult insect hatches. Antibiotics on the surface of the cocoon, produced by symbionts, guarantee protection against microbial pests during such long developmental stage. The amount of antibiotics was visualized by means of imaging techniques based on mass spectrometry (LDI imaging) and merged as pseudocolors onto the cocoon. Johannes Kroiss and Martin Kaltenpoth, MPI for Chemical Ecology, Jena

Using imaging techniques based on mass spectrometry, the antibiotics could be displayed in vivo on the cocoon's exterior surface. Moreover, it was shown that the use of different kinds of antibiotics provides an effective protection against infection with a multitude of different pathogenic microorganisms. Thus, for millions of years beewolves have been taking advantage of a principle that is known as combination prophylaxis in human medicine. (Nature Chemical Biology, Advance Online Publication, February 28, 2010)

Many insects spend a part of their life underground and are exposed to the risk of fungal or bacterial infections. This is also the case for many digger wasp species that construct underground nests. Unlike bees that use pollen and nectar as food to nurture their larvae, digger wasps hunt insects to feed their offspring. Because of the warm and humid conditions as well as the large amounts of organic material in their subterranean nest, both their food supply and their larvae are endangered by pathogens - mold and bacterial infection are a major threat and can cause larval death in many cases.

Symbiosis with bacteria increases survival rate of beewolf larvae

Beewolves, i.e. digger wasps that hunt for bees to feed their larvae, have evolved an elegant solution to the problem of fungal and bacterial infection. Martin Kaltenpoth and colleagues from the University of Wurzburg had already shown several years ago that beewolves form a symbiotic relationship with bacteria of the genus Streptomyces. Female beewolves cultivate these bacteria in specialized antennal gland reservoirs and apply them to the ceiling of the brood cells. Beewolf larvae later take up the bacteria and transfer the symbionts actively to their cocoons, thereby increasing their survival probability. However, it has been unclear so far how the protection is achieved.

Scientists of the groups of Aleš Svatoš and Martin Kaltenpoth at the Max Planck Institute in cooperation with their colleagues at the University of Regensburg and the Hans-Knoell-Institute in Jena now discovered that the symbionts produce nine different antibiotic substances. For the first time the biologists were able to identify these substances directly in the natural environment, i.e. on the beewolf cocoon (see figure). Other studies on protective symbioses could detect antibiotic substances only after isolation and cultivation of the symbionts in artificial culture media. By means of a novel technique of imaging mass spectrometry (LDI imaging), the Jena scientists could demonstrate that the antibiotics are primarily present on the exterior of the cocoon, reducing the risk of potentially harmful side-effects on the larvae.

"Combination Medication" broadens the spectrum of efficacy

In biotests with different pathogenic fungi and bacteria the scientists observed that beewolves utilize the principle of combination medication: "A combined treatment with streptochlorin and eight different piericidines we were able to isolate from the cocoon helps to fend off a very broad spectrum of microorganisms; this cannot be achieved with a single substance. This means that millions of years ago, beewolves and their symbionts have already evolved a strategy that is known from human medicine as combination prophylaxis" explains Johannes Kroiss, first author of the study.

With their work the researchers break new ground: "Astonishingly, little is known about the ecological importance of antibiotics in their natural environment. Supported by mass spectrometric imaging we are now able to better understand the natural role of antibiotic substances in the environment," says Aleš Svatoš, leader of the mass spectrometry research group. The imaging techniques can help to provide important insights, especially into the exploration of symbiotic interactions. "We suppose that protective symbioses like the ones between beewolves and Streptomyces bacteria are much more common in the animal kingdom than previously assumed," says Martin Kaltenpoth, who heads a Max Planck Research Group on Insect-Bacteria Symbiosis since January. "An analysis of the substances involved not only contributes to the understanding of the evolution of such symbioses but could also lead to the discovery of interesting new drug candidates for human medicine." [JK/MK/AO]

Original Publication:

Johannes Kroiss, Martin Kaltenpoth, Bernd Schneider, Maria-Gabriele Schwinger, Christian Hertweck, Ravi Kumar Maddula, Erhard Strohm, Aleš Svatoš: Symbiotic streptomycetes provide antibiotic combination prophylaxis for wasp offspring. Nature Chemical Biology, Advance online publication, February 28, 2010, DOI 10.1038/nchembio.331

Further Information:

Dr. Aleš Svatoš, MPI for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena
Tel.: +49 (0)3641/57-1700; svatos@ice.mpg.de
Dr. Martin Kaltenpoth, MPI for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena
Tel.: +49 (0)3641/57-1800; mkaltenpoth@ice.mpg.de

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Further information:
http://www.ice.mpg.de

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>