Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Bees Smell

12.02.2013
Odors play a major role in the life of honeybees. Accordingly, their nervous system needs to be highly capable of processing olfactory information. Indeed, the animals have the ability to process the relevant data in parallel as researchers of the Biocenter have been able to demonstrate for the first time.

When foraging for nectar- and pollen-rich flowers, honeybees (Apis mellifera) have to respond quickly to sensory input. When their olfactory receptors on the antennae catch traces of a scent in flight, the animals need to determine very quickly which type of scent it is and where it originates from.


The olfactory system of the honey bee: The two olfactory pathways leading from the antennal lobe to higher-order structures are highlighted in green and purple. The bee uses them for parallel processing of olfactory information.

Graphics Martin Brill and Wolfgang Rößler

This is the only way to make the right decision about the flower in question. In other respects too, the bee is highly dependent on the capacity to identify and classify odors in its everyday life: The animals communicate with each other via odors, differentiate between friend and foe on the basis of the typical "hive odor" and rely on odor trails for orientation.

In order to implement fast and reliable processing of such olfactory information, the honeybees have developed special structures and extremely efficient processing methods. The structural design of this olfactory system has long been known in minute detail; previously, however, there was a need for clarification on the flow of information within these structures. This has changed now: Together with colleagues from the Free University of Berlin (FU Berlin), University of Würzburg scientists have found answers to previously unanswered questions.

Parallel data processing

"We were able to establish that honeybees process olfactory information in parallel in the brain. Different parameters of the same information are transmitted via separate pathways in the animals, which increases the processing speed significantly," says Professor Wolfgang Rößler, the head of the Department for Zoology II at the University of Würzburg. Together with his doctoral student, Martin Brill, he conducted the decisive experiments during the past two years.

Parallel processing: This type of processing is already known by scientists to be used in other sensory systems, such as vision. The information arriving at the retina of the eye is first divided into different components – color, contrast, movement, location – and then transmitted to the brain for further processing via separate channels. Two such channels are known to exist in bees as well, but they are located in the olfactory system in their case. Previously, it was uncertain whether these are actually used for parallel processing. "It would have been just as conceivable that these structures only differ in that they are responsible for different odors," Rößler notes.

The olfactory system of the bee

The honeybee possesses about 60,000 olfactory receptors, located on its two antennae. From there, the information is transferred to the so-called antennal lobe, where primary processing takes place in about 160 spheroidal structures, the olfactory glomeruli. Via two neural tracts, consisting of numerous individual nerve cells, the data are then sent to higher-order structures – the mushroom body and the lateral horn – to be further processed. The Würzburg scientists focused their research on these two neural tracts.

"In earlier studies, the activity could only be measured in one of these neural tracts at a time," Martin Brill explains. Thus, it was impossible to decide whether the information is processed in parallel. Therefore, the scientists first needed to develop an apparatus for taking synchronous measurements in both tracts, the so-called multi-unit recording technology. Special amplifiers were required to read the signals and some special software to control the processes.
The experiment

It was therefore "quite an effort" to get started on the studies, as Brill remembers. The preliminary work alone stretched over about two years. As soon as the technology was ready, however, the experiments proceeded to the satisfaction of the scientists. They collected a treasure trove of data within a very short period of time. They were assisted in the evaluation of the data by the computational neuroscientist Martin Nawrot (FU Berlin / Bernstein Center for Computational Neuroscience Berlin).

In their experiments, Rößler and Brill presented a diverse range of odors to the bees: from typical floral scents, to pheromones – i.e. messenger substances that the animals use for communication – to social odors from the everyday environment of a honeybee: Beeswax, honey, abandoned combs. During odor exposure, they measured the activity of numerous nerve cells in both neural tracts, using extremely fine probes, namely wire electrodes made by the scientists themselves, corresponding in diameter (15µm) to just one fifth of one strand of human hair.

The results of the studies

"Our studies have shown that both neural tracts exhibit broadly overlapping activity patterns. This indicates that the information is processed in parallel," Wolfgang Rößler summarizes the results. The assumption that the tracts might be responsible for different odor types has thus been refuted.

However, the scientists also found some differences between the tracts: One transmits information in a very general way – each single nerve cell that it is composed of responds to a diverse range of odors. The other one works in a rather more specific way: In this tract, individual nerve cells are responsible for only one odor or just a few odors. On this pathway, the transmission takes a bit longer – albeit only in the millisecond range.

The "what" channel and the "when" channel: This is how the scientists named the two neural pathways. One pathway tells the bee which odor it currently perceives while the other pathway provides the respective temporal information. From this information, the animal can derive with precision where the odor originates.
Further studies necessary

According to Rößler, the processing principle might be particularly well suited for conducting a very fast analysis of odor mixtures. This is of special importance to the bees, since each bee hive has its own distinctive odor. The smell is caused by an assortment of about 25 substances on the surface area of the bees' body, differing from colony to colony in its special mixing ratio. Whether parallel processing actually enables bees to identify odor mixtures particularly well is still subject to further examination and the respective hypothesis needs to be tested in future, Rößler explains.

In any case, Rößler warns against excessive euphoria: The "olfactory code" has not yet been cracked in our study. However, we have achieved an important step towards this goal.

The project was funded by the German Research Foundation (DFG) under the nationwide priority program "Integrative Analysis of Olfaction" (SPP 1392).

Parallel Processing via a Dual Olfactory Pathway in the Honeybee. Martin F. Brill, Tobias Rosenbaum, Isabelle Reus, Christoph J. Kleineidam, Martin P. Nawrot and Wolfgang Rössler. Journal of Neuroscience. 6. February 2013. DOI:10.1523/JNEUROSCI.4268-12.2013

Contact person

Prof. Dr. Wolfgang Rößler, T: +49 (0) 931 31-84306, email: roessler@biozentrum.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>