Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bees recognize human faces using feature configuration

29.01.2010
Going about their day-to-day business, bees have no need to be able to recognise human faces. Yet in 2005, when Adrian Dyer from Monash University trained the fascinating insects to associate pictures of human faces with tasty sugar snacks, they seemed to be able to do just that.

But Martin Giurfa from the Université de Toulouse, France, suspected that that the bees weren't learning to recognise people. 'Because the insects were rewarded with a drop of sugar when they chose human photographs, what they really saw were strange flowers.

The important question was what strategy do they use to discriminate between faces,' explains Giurfa. Wondering whether the insects might be learning the relative arrangement (configuration) of features on a face, Giurfa contacted Dyer and suggested that they go about systematically testing which features a bee learned to recognise to keep them returning to Dyer's face photos. The team publish their discovery that bees can learn to recognise the arrangement of human facial features on 29 January 2010 in the Journal of Experimental Biology at http://jeb.biologists.org.

Teaming up with Aurore Avargues-Weber, the team first tested whether the bees could learn to distinguish between simple face-like images. Using faces that were made up of two dots for eyes, a short vertical dash for a nose and a longer horizontal line for a mouth, Avargues-Weber trained individual bees to distinguish between a face where the features were cramped together and another where the features were set apart. Having trained the bee to visit one of the two faces by rewarding it with a weak sugar solution, she tested whether it recognised the pattern by taking away the sugar reward and waiting to see if the bee returned to the correct face. It did.

... more about:
»BEES »drop of sugar »human faces »insects

So the bees could learn to distinguish patterns that were organised like faces, but could they learn to 'categorize' faces? Could the insects be trained to classify patterns as face-like versus non-face like, and could they decide that an image that they had not seen before belonged to one class or the other? To answer these questions, Avargues-Weber trained the bees by showing them five pairs of different images, where one image was always a face and the other a pattern of dots and dashes. Bees were always rewarded with sugar when they visited the face while nothing was offered by the non-face pattern. Having trained the bees that 'face-like' images gave them a reward, she showed the bees a completely fresh pair of images that they had not seen before to see if the bees could pick out the face-like picture. Remarkably they did. The bees were able to learn the face images, not because they know what a face is but because they had learned the relative arrangement and order of the features.

But how robust was the bees' ability to process the "face's" visual information? How would the bees cope with more complex faces? This time the team embedded the stick and dot faces in face-shaped photographs. Would the bees be able to learn the arrangements of the features against the backgrounds yet recognise the same stick and dot face when the face photo was removed? Amazingly the insects did, and when the team tried scrambling real faces by moving the relative positions of the eyes, nose and mouth, the bees no longer recognised the images as faces and treated them like unknown patterns.

So bees do seem to be able to recognise face-like patterns, but this does not mean that they can learn to recognise individual humans. They learn the relative arrangements of features that happen to make up a face-like pattern and they may use this strategy to learn about and recognize different objects in their environment.

What is really amazing is that an insect with a microdot-sized brain can handle this type of image analysis when we have entire regions of brain dedicated to the problem. Giurfa explains that if we want to design automatic facial recognition systems, we could learn a lot by using the bees' approach to face recognition.

IF REPORTING ON THIS STORY, PLEASE MENTION THE JOURNAL OF EXPERIMENTAL BIOLOGY AS THE SOURCE AND, IF REPORTING ONLINE, PLEASE CARRY A LINK TO: http://jeb.biologists.org

REFERENCE: Avargues-Weber, A., Portelli, G., Bénard, J., Dyer, A. and Giurfa, M. (2010). Configural processing enables discrimination and categorization of face-like stimuli in honeybees. J. Exp. Biol. 213, 593-601.

Kathryn Knight | EurekAlert!
Further information:
http://www.biologists.com

Further reports about: BEES drop of sugar human faces insects

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>