Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bees that nest in petals

05.05.2010
Scientists from the US, Turkey, Switzerland and Iran describe the nest of an uncommon solitary bee

In a rare coincidence, researchers working in both Turkey and Iran discovered on the same day how a rare species of bee builds its underground nests. The females from the solitary species Osima (Ozbekosima) avoseta line the nest's brood chambers with petals of pink, yellow, blue, and purple flowers. The chambers provide nutrients for the larvae to grow and mature and protect the next generation as they wait out the winter. The new research was published this February in American Museum Novitates.

"It was absolute synchronicity that we all discovered this uncommon behavior on the same day," says Jerome Rozen, curator in the Division of Invertebrate Zoology at the American Museum of Natural History. Rozen and colleagues were working near Antalya, Turkey while another group of researchers were in the field in Fars Province, Iran. "I'm very proud of the fact that so many authors contributed to this paper."

Bees are the most important animal pollinators living today, and many flowering plants depend on bees to reproduce. But nearly 75% of bee species—and there are about 20,000 species described—are solitary. This means that for the majority of bees, a female constructs a nest for herself and provisions each chamber in the nest with food for the larval stage of her brood. When each chamber is ready, the female deposits an egg and closes the nest if there is only one chamber to a nest. The nests—found in the open in the ground—need to be protected from any number of potential threats to their physical structure like compaction of the soil, desiccation, or excessive heating. The survival of solitary bee species also depends on protection from molds, viruses, bacteria, parasites, and predators.

In O. avosetta, the female builds a nest in one or two vertical chambers close to the surface, or between 1.5 and 5 cm below ground. Entering from the top, the adult female lines each chamber with overlapping petals, starting at the bottom. The female then ferries claylike mud to the nest, plasters a thin layer (about 0.5 mm thick) on the petals, and finishes the lining with another layer of petals. The nest is essentially a petal sandwich, built in the dark.

When the physical structure is ready, female O. avosetta gather provisions of a sticky mix of nectar and pollen and place it on the chamber's floor. An egg is deposited on its surface, and the chamber is closed by carefully folding the petals at the top. The nest is capped with a plug of mud, sealing the young bee in a humid chamber that becomes rigid and protects the larvae as it eats its rations, spins a cocoon, and falls into a 10-month sleep until spring. The nests of the species can be parasitized by a wasp that lays an egg in the brood chamber and kills the O. avosetta egg with enlarged jaws and then devours the provisions.

"In this species, a female shingles the wall of her brood chambers with large pieces of petals or with whole petals, often of many hues," says Rozen. "Unfortunately, her larvae never enjoy the brilliant colors of the nest's walls because they have no eyes—and, anyhow, they would need a flashlight!"

In addition to Rozen, authors include Hikmet Özbek of Atatürk University's Department of Plant Protection in Erzurum, Turkey; John S. Ascher of the Division of Invertebrate Zoology at the Museum; Claudio Sedivy and Andreas Müller of ETH Zurich's Applied Entomology in Zürich, Switzerland; Christophe Praz of Cornell University's Department of Entomology in Ithaca, New York; and Alireza Monfared of Yasouj University's Department of Plant Protection in Yasouj, Iran. Funding for this research came from Robert G. Goelet, the American Museum of Natural History, and other individuals and institutions.

Kristin Elise Phillips | EurekAlert!
Further information:
http://www.amnh.org

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>