Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bees that nest in petals

Scientists from the US, Turkey, Switzerland and Iran describe the nest of an uncommon solitary bee

In a rare coincidence, researchers working in both Turkey and Iran discovered on the same day how a rare species of bee builds its underground nests. The females from the solitary species Osima (Ozbekosima) avoseta line the nest's brood chambers with petals of pink, yellow, blue, and purple flowers. The chambers provide nutrients for the larvae to grow and mature and protect the next generation as they wait out the winter. The new research was published this February in American Museum Novitates.

"It was absolute synchronicity that we all discovered this uncommon behavior on the same day," says Jerome Rozen, curator in the Division of Invertebrate Zoology at the American Museum of Natural History. Rozen and colleagues were working near Antalya, Turkey while another group of researchers were in the field in Fars Province, Iran. "I'm very proud of the fact that so many authors contributed to this paper."

Bees are the most important animal pollinators living today, and many flowering plants depend on bees to reproduce. But nearly 75% of bee species—and there are about 20,000 species described—are solitary. This means that for the majority of bees, a female constructs a nest for herself and provisions each chamber in the nest with food for the larval stage of her brood. When each chamber is ready, the female deposits an egg and closes the nest if there is only one chamber to a nest. The nests—found in the open in the ground—need to be protected from any number of potential threats to their physical structure like compaction of the soil, desiccation, or excessive heating. The survival of solitary bee species also depends on protection from molds, viruses, bacteria, parasites, and predators.

In O. avosetta, the female builds a nest in one or two vertical chambers close to the surface, or between 1.5 and 5 cm below ground. Entering from the top, the adult female lines each chamber with overlapping petals, starting at the bottom. The female then ferries claylike mud to the nest, plasters a thin layer (about 0.5 mm thick) on the petals, and finishes the lining with another layer of petals. The nest is essentially a petal sandwich, built in the dark.

When the physical structure is ready, female O. avosetta gather provisions of a sticky mix of nectar and pollen and place it on the chamber's floor. An egg is deposited on its surface, and the chamber is closed by carefully folding the petals at the top. The nest is capped with a plug of mud, sealing the young bee in a humid chamber that becomes rigid and protects the larvae as it eats its rations, spins a cocoon, and falls into a 10-month sleep until spring. The nests of the species can be parasitized by a wasp that lays an egg in the brood chamber and kills the O. avosetta egg with enlarged jaws and then devours the provisions.

"In this species, a female shingles the wall of her brood chambers with large pieces of petals or with whole petals, often of many hues," says Rozen. "Unfortunately, her larvae never enjoy the brilliant colors of the nest's walls because they have no eyes—and, anyhow, they would need a flashlight!"

In addition to Rozen, authors include Hikmet Özbek of Atatürk University's Department of Plant Protection in Erzurum, Turkey; John S. Ascher of the Division of Invertebrate Zoology at the Museum; Claudio Sedivy and Andreas Müller of ETH Zurich's Applied Entomology in Zürich, Switzerland; Christophe Praz of Cornell University's Department of Entomology in Ithaca, New York; and Alireza Monfared of Yasouj University's Department of Plant Protection in Yasouj, Iran. Funding for this research came from Robert G. Goelet, the American Museum of Natural History, and other individuals and institutions.

Kristin Elise Phillips | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>