Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bees that nest in petals

05.05.2010
Scientists from the US, Turkey, Switzerland and Iran describe the nest of an uncommon solitary bee

In a rare coincidence, researchers working in both Turkey and Iran discovered on the same day how a rare species of bee builds its underground nests. The females from the solitary species Osima (Ozbekosima) avoseta line the nest's brood chambers with petals of pink, yellow, blue, and purple flowers. The chambers provide nutrients for the larvae to grow and mature and protect the next generation as they wait out the winter. The new research was published this February in American Museum Novitates.

"It was absolute synchronicity that we all discovered this uncommon behavior on the same day," says Jerome Rozen, curator in the Division of Invertebrate Zoology at the American Museum of Natural History. Rozen and colleagues were working near Antalya, Turkey while another group of researchers were in the field in Fars Province, Iran. "I'm very proud of the fact that so many authors contributed to this paper."

Bees are the most important animal pollinators living today, and many flowering plants depend on bees to reproduce. But nearly 75% of bee species—and there are about 20,000 species described—are solitary. This means that for the majority of bees, a female constructs a nest for herself and provisions each chamber in the nest with food for the larval stage of her brood. When each chamber is ready, the female deposits an egg and closes the nest if there is only one chamber to a nest. The nests—found in the open in the ground—need to be protected from any number of potential threats to their physical structure like compaction of the soil, desiccation, or excessive heating. The survival of solitary bee species also depends on protection from molds, viruses, bacteria, parasites, and predators.

In O. avosetta, the female builds a nest in one or two vertical chambers close to the surface, or between 1.5 and 5 cm below ground. Entering from the top, the adult female lines each chamber with overlapping petals, starting at the bottom. The female then ferries claylike mud to the nest, plasters a thin layer (about 0.5 mm thick) on the petals, and finishes the lining with another layer of petals. The nest is essentially a petal sandwich, built in the dark.

When the physical structure is ready, female O. avosetta gather provisions of a sticky mix of nectar and pollen and place it on the chamber's floor. An egg is deposited on its surface, and the chamber is closed by carefully folding the petals at the top. The nest is capped with a plug of mud, sealing the young bee in a humid chamber that becomes rigid and protects the larvae as it eats its rations, spins a cocoon, and falls into a 10-month sleep until spring. The nests of the species can be parasitized by a wasp that lays an egg in the brood chamber and kills the O. avosetta egg with enlarged jaws and then devours the provisions.

"In this species, a female shingles the wall of her brood chambers with large pieces of petals or with whole petals, often of many hues," says Rozen. "Unfortunately, her larvae never enjoy the brilliant colors of the nest's walls because they have no eyes—and, anyhow, they would need a flashlight!"

In addition to Rozen, authors include Hikmet Özbek of Atatürk University's Department of Plant Protection in Erzurum, Turkey; John S. Ascher of the Division of Invertebrate Zoology at the Museum; Claudio Sedivy and Andreas Müller of ETH Zurich's Applied Entomology in Zürich, Switzerland; Christophe Praz of Cornell University's Department of Entomology in Ithaca, New York; and Alireza Monfared of Yasouj University's Department of Plant Protection in Yasouj, Iran. Funding for this research came from Robert G. Goelet, the American Museum of Natural History, and other individuals and institutions.

Kristin Elise Phillips | EurekAlert!
Further information:
http://www.amnh.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>