Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bees Can Learn Differences in Food’s Temperature

18.11.2009
Biologists at UC San Diego have discovered that honeybees can discriminate between food at different temperatures, an ability that may assist bees in locating the warm, sugar-rich nectar or high-protein pollen produced by many flowers.

While other researchers had previously found hints that bees might have the ability to do this, the UCSD biologists provide the first detailed experimental evidence in a paper that will be published in the December 1 issue of the Journal of Experimental Biology. An early online version of the paper is being made available by the journal this week.

“We show that honeybees have the ability to associate temperature differences with food,” said James Nieh, an associate professor of biology who headed the study. “This information may help guide bees looking for food by allowing them to distinguish which bees are returning to the hive with the highest quality of food.”

“Body temperature is seen in terms of its net caloric benefit to the other foragers,” said Nieh. “The warmest forager in the nest is the one most likely to be visiting of the sweetest, highest quality food.”

Nieh and researchers in his laboratory last year published a paper showing that bumblebees returning to their nests with higher quality pollen were warmer than bees that collected pollen with less protein. That gave the UCSD scientists evidence that bees may change their body temperature to reflect food quality, even for food that they do not consume and that has no direct metabolic impact on the bee.

Knowing that honeybees sense the temperature of returning foragers with their antennae, while these foragers conduct elaborate dances within the hive to communicate food location, Nieh and his colleagues wondered whether bees also sensed the temperature of their food. With the help of two undergraduate students, Tobin Hammer and Curtis Hata, he sought to find out whether bees possessed this ability.

Training bees to stick out their tongues in return for a sugary reward when the team touched a warm surface to a bee’s antenna, the researchers found that bees could learn to identify warmth with food. Next, they tested whether the bees could learn to associate temperature differences with a food reward and discovered that this was also the case.

However, while the bees’ abilities to recognize the temperature difference increased dramatically as the differences in temperatures rose, the scientists discovered that the bees were better at recognizing warm temperature differences than they were at cold temperature differences. In fact, the bees’ abilities were twice as good at recognizing differences of 10 degrees Celsius above room temperature than they were at recognizing differences of minus 10 degrees Celsius below room temperature.

The researchers point out in their paper that this enhanced ability to distinguish warmer temperature differences could be an advantage for gathering nectar in many flowers. During the day, they note, temperatures in the centers of daffodils can be up to 8 degrees Celsius warmer than they are outside the flowers.

“A honeybee’s ability to associate positive temperature differences with nectar rewards could also have a natural role inside the nest,” the researchers conclude in their paper. “Honeybee foragers can elevate their body temperature after returning from a high-quality food source, and foragers returning from natural nectar or pollen sources increase their thoracic temperature when the colony has need for these resources.”

The study was supported by the UC San Diego Opportunities for Research in Behavioral Sciences Program, which is supported by the National Science Foundation. ORBS is a program for high school students and undergraduates that provides research experience for students who are traditionally underrepresented in the sciences.

Kim McDonald | Newswise Science News
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>