Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How bees decide what to be

17.09.2012
Johns Hopkins researchers link reversible 'epigenetic' marks to behavior patterns

Johns Hopkins scientists report what is believed to be the first evidence that complex, reversible behavioral patterns in bees – and presumably other animals – are linked to reversible chemical tags on genes.

The scientists say what is most significant about the new study, described online September 16 in Nature Neuroscience, is that for the first time DNA methylation "tagging" has been linked to something at the behavioral level of a whole organism. On top of that, they say, the behavior in question, and its corresponding molecular changes, are reversible, which has important implications for human health.

According to Andy Feinberg, M.D., M.P.H., Gilman scholar, professor of molecular medicine and director of the Center for Epigenetics at Hopkins' Institute for Basic Biomedical Sciences, the addition of DNA methylation to genes has long been shown to play an important role in regulating gene activity in changing biological systems, like fate determination in stem cells or the creation of cancer cells. Curious about how epigenetics might contribute to behavior, he and his team studied a tried-and-true model of animal behavior: bees.

Working with bee expert Gro Amdam, Ph.D., associate professor of life sciences at Arizona State University and the Norwegian University of Life Sciences, Feinberg's epigenetics team found significant differences in DNA methylation patterns in bees that have identical genetic sequences but vastly different behavioral patterns.

Employing a method that allows the researchers to analyze the whole genome at once, dubbed CHARM (comprehensive high-throughput arrays for relative methylation), the team analyzed the location of DNA methylations in the brains of worker bees of two different "professions." All worker bees are female and, within a given hive, are all genetically identical sisters. However, they don't all do the same thing; some nurse and some forage.

Nurses are generally younger and remain in the hive to take care of the queen and her larvae. When nurses mature, they become foragers that leave the hive to gather pollen and other supplies for the hive. "Genes themselves weren't going to tell us what is responsible for the two types of behavior," Feinberg says. "But epigenetics – and how it controls genes – could."

Feinberg and Amdam started their experiment with new hives populated by bees of the same age. That removed the possibility that any differences they might find could be attributed to differences of age. "When young, age-matched bees enter a new hive, they divvy up their tasks so that the right proportion becomes nurses and foragers," explains Amdam. It is these two populations that were tested after painstakingly characterizing and marking each bee with its "professional," or behavioral, category.

Analyzing the patterns of DNA methylation in the brains of 21 nurses and 21 foragers, the team found 155 regions of DNA that had different tag patterns in the two types of bees. The genes associated with the methylation differences were mostly regulatory genes known to affect the status of other genes. "Gene sequences without these tags are like roads without stop lights – gridlock," says Feinberg.

Once they knew differences existed, they could take the next step to determine if they were permanent. "When there are too few nurses, the foragers can step in and take their places, reverting to their former practices," says Amdam. The researchers used this strategy to see whether foraging bees would maintain their foraging genetic tags when forced to start acting like nurses again. So they removed all of the nurses from their hives and waited several weeks for the hive to restore balance.

That done, the team again looked for differences in DNA methylation patterns, this time between foragers that remained foragers and those that became nurses. One hundred and seven DNA regions showed different tags between the foragers and the reverted nurses, suggesting that the epigenetic marks were not permanent but reversible and connected to the bees' behavior and the facts of life in the hive.

Dramatically, Feinberg noted, more than half of those regions had already been identified among the 155 regions that change when nurses mature into foragers. These 57 regions are likely at the heart of the different behaviors exhibited by nurses and foragers, says Amdam. "It's like one of those pictures that portray two different images depending on your angle of view," she says. "The bee genome contains images of both nurses and foragers. The tags on the DNA give the brain its coordinates so that it knows what kind of behavior to project."

The researchers say they hope their results may begin to shed light on complex behavioral issues in humans, such as learning, memory, stress response and mood disorders, which all involve interactions between genetic and epigenetic components similar to those in the study. A person's underlying genetic sequence is acted upon by epigenetic tags, which may be affected by external cues to change in ways that create stable – but reversible – behavioral patterns.

Authors on the paper include Brian Herb, Kasper Hansen, Martin Aryee, Ben Langmead, Rafael Irizarry and Andrew Feinberg from The Johns Hopkins University, and Florian Wolschin and Gro Amdam of the Norwegian University of Life Sciences and Arizona State University.

This work was funded through the NIH Director's Pioneer Award through the National Institute of Environmental Health Sciences (#DP1ES022579), the Research Council of Norway and the Pew Charitable Trust.

On the Web:

Nature Neuroscience: http://www.nature.com/neuro/index.html
Feinberg lab: http://epigenetics.jhu.edu/
Feinberg's profile: http://epigenetics.jhu.edu/?section=personnelPages&personID=2
Feinberg is awarded NIH Director's Pioneer Award: http://www.hopkinsmedicine.org/news/media/releases/nih_directors_awards
_go_to_three_johns_hopkins_scientists_for_work_that_challenges_the_status
_quo_and_speeds_translation_of_research
Amdam lab: http://amdamlab.asu.edu/

Cathy Kolf | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>