Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beehive:It’s time to sleep, little bee!

17.07.2014

The division of labor is very strict in a beehive. The same applies to periods of rest: honey bees sleep with other members of their professional group, as researchers from the University of Würzburg’s Biocenter have discovered.

The activities in a bee colony are highly organized. The insects adhere to a strict division of labor: cleaning combs, feeding the brood and the queen, producing wax and building combs, keeping watch in front of the hive, foraging for nectar and pollen – each of these tasks is carried out by a specific “professional group”.


A forager bee has clamped itself between two combs using its head and the end of its abdomen so it can sleep. This image comes from a hive and was taken using an endoscope with an infrared light.

(Photo: Hobos team)

But what is the situation with periods of sleep and rest? Do these merely represent a lack of activity, where the bees simply do nothing in the location they happen to be in at that time? Or does the bee colony also exhibit sleep behavioral patterns that are specific to their professional groups? This is exactly what happens, as biologists Barrett Klein, Martin Stiegler, Arno Klein, and Jürgen Tautz from the universities of Würzburg and Wisconsin – La Crosse (USA) report in the journal PLoS ONE.

Inside workers sleep in the middle

... more about:
»PLoS »activity »antennae »beehives »breeding »clock »colony »humans »insects »night »sleep

Young bees that work inside generally sleep in empty cells close to the middle of the hive, usually in the breeding area. They have several sleep periods daily, spread over day and night. “The breeding area is a bustling place around the clock,” says Jürgen Tautz, “so empty cells there presumably offer the least chance of being disturbed while sleeping.”

When bees switch from inside to outside service, their sleep periods are gradually delayed. Tautz explains: “The older the bees become, the less they sleep. As forager bees, they demonstrate a clear day-night rhythm to their sleeping behavior. They then generally sleep outside cells and closer to the edge of the combs. There they are likely to be largely undisturbed at night.”

Initial findings about sleeping insects

Sleep in insects: The door to this research field was opened in 1983. At that time, German zoologist Walter Kaiser presented new findings about honey bees, and Swiss researcher Irene Tobler published a comparable paper about cockroaches.

The fact that non-vertebrates also demonstrate a genuine sleep behavior came as such a surprise back then that many scientists were reticent in their response, as Tautz explains. Würzburg bee researcher Martin Lindauer had found early indications as far back as 1952: During continuous day-night observations of individual forager bees, he noted that they were “idle” at night especially.

“Over time, more and more similarities have emerged between sleep in bees and sleep in humans,” says Tautz. While initially bee sleep was only detected in phases of immobility, scientists later identified periods of sleep of varying depth as well in the flying insects. As in humans, sleep deprivation in bees also reduces their ability to learn and communicate.

Biological function remains unclear

Also common to both is the fact that, like in humans, many questions remain unanswered regarding the biological function that sleep has in bees. Various explanations have admittedly been proposed by the scientific community, but none of them is universally recognized. One hypothesis assumes, for example, that the organism regenerates itself during sleep. Another regards sleep as an energy-saving measure, and a third suggests that during sleep the brain separates important from unimportant information, meaningfully committing the former to memory.

Beehive is monitored online

The Würzburg research team is keen to conduct further studies to find out more about how bees sleep. Tautz’s team will use a variety of tools, including the Hobos system (Hobos stands for “Honeybee Online Studies”): This monitors the activity in a beehive online around the clock using various sensor and measuring techniques, and the values can be retrieved on the Internet: http://www.hobos.de

New sleep posture discovered

Using Hobos, the Würzburg researchers have now also discovered a previously unknown sleep posture in bees: The insects clamp themselves between two combs using their head and the end of their abdomen and leave their antennae and legs dangling relaxed. They can remain completely motionless in this position for up to 30 minutes. Otherwise, bees sleep by simply squatting in one place with their antennae hanging down.

Barrett Klein, Martin Stiegler, Arno Klein, Jürgen Tautz: "Mapping sleeping bees within their nest: spatial and temporal analysis of worker honey bee sleep", PLoS ONE 2014, July 16

Contact

Prof. Dr. Jürgen Tautz, Biocenter at the University of Würzburg, T +49 (0)931 31-84319, tautz@biozentrum.uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

Further reports about: PLoS activity antennae beehives breeding clock colony humans insects night sleep

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>