Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bee research sheds light on human sweet perception, metabolic disorders

02.07.2012
Scientists at Arizona State University have discovered that honey bees may teach us about basic connections between taste perception and metabolic disorders in humans.
By experimenting with honey bee genetics, researchers have identified connections between sugar sensitivity, diabetic physiology and carbohydrate metabolism. Bees and humans may partially share these connections.

In a study published in the open-access journal PLoS Genetics (Public Library of Science), Gro Amdam, an associate professor, and Ying Wang, a research scientist, in the School of Life Sciences in ASU’s College of Liberal Arts and Sciences, explain how for the first time, they’ve successfully inactivated two genes in the bees’ “master regulator” module that controls food-related behaviors. By doing so, researchers discovered a possible molecular link between sweet taste perception and the state of internal energy.

“A bee’s sensitivity to sugar reveals her attitude towards food, how old the bee is when she starts searching for nectar and pollen, and which kind of food she prefers to collect,” said Wang, the lead author of the paper. “By suppressing these two ‘master’ genes, we discovered that bees can become more sensitive to sweet taste. But interestingly, those bees also had very high blood sugar levels, and low levels of insulin, much like people who have Type 1 diabetes.”

In Amdam’s honey bee lab at ASU, scientists suppressed two genes including vitellogenin, which is similar to a human gene called apolipoprotein B, and ultraspiracle, which partners with an insect hormone that has some functions in common with the human thyroid hormone. The team is the first in the world to accomplish this double gene-suppressing technique. Researchers used this method to understand how the master regulator works.

“Now, if one can use the bees to understand how taste perception and metabolic syndromes are connected, it’s a very useful tool,” said Amdam, who also has a honey bee laboratory at the Norwegian University of Life Sciences. “Most of what we know about deficits in human perceptions is from people who are very sick or have had a brain trauma. We know shockingly little about people in this area.”

The researchers are now considering how, exactly, the bees’ sweet taste was enhanced by the experiment. The most metabolically active tissue of the bee, called the fat body, may hold the key. The fat body is similar to the liver and abdominal fat in humans, in that it helps store nutrients and create energy.

Amdam explains that taste perception evolved as a survival mechanism, for bees as well as for people. For example, bitter foods may be poisonous or sweet taste may signal foods rich in calories for energy. For all animals, taste perception must communicate properly with one’s internal energetic state to control food intake and maintain normal life functions. Without this, poorly functioning taste perception can contribute to unhealthy eating behaviors and metabolic diseases, such as diabetes and obesity.

“From this study, we realized we can take advantage of honey bees in understanding how food-related behaviors interact with internal metabolism, as well as how to manipulate these food-related behaviors in order to control metabolic disorders,” added Amdam.

In addition to Amdam and Wang, the team included former ASU research partners Colin Brent, a research entomologist with the USDA, and Erin Fennern, now with Oregon Health Science University.
Sandy Leander, sandra.leander@asu.edu
480-965-9865
School of Life Sciences

Sandra Leander | EurekAlert!
Further information:
http://www.asu.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>