Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bee Pupae: Defenseless Against Infections

27.08.2013
The Varroa mite is capable of annihilating entire bee colonies. Until now, this has been attributed to viruses that are introduced into the hive by the mites. However, the parasites carry yet another danger to the bees as University of Würzburg researchers found out.

In the summer season, a hive includes up to 50,000 workers, several hundred drones and one queen, living in very close surroundings in a warm and humid atmosphere, which is also conducive to the growth of pathogenic bacteria. This might lead you to believe that infections spread easily in a bee hive.


Varroa mite females suck at two bee pupae, a drone pupa (left) and a worker pupa (right). The mites are only about one millimeter in size. Photo: Helga R. Heilmann

However, the bees are well protected against this risk. Firstly, they set great store on hive hygiene. Furthermore, young workers, drones and queens react to bacterial infections with several defense mechanisms of their innate immune system. Bee larvae are also capable of defending themselves effectively against bacteria. All this has been demonstrated in recent years by the Beegroup of Professor Jürgen Tautz at the Biocenter of the University of Würzburg.

Bacteria kill off bee pupae quickly

Still, the insects are defenseless at a certain stage of their development: After pupation of the larvae, their immune system stays completely inactive. This is reported in the journal PLOS ONE by the Würzburg scientists. When bee pupae were exposed to "harmless" Escherichia coli bacteria, this led to their death within only a few hours of infection. "The bacteria proliferated rapidly in the pupae, which apparently caused the death of the latter," says Professor Hildburg Beier, a member of the Beegroup.

In an intact bee hive, the pupae are usually well protected from bacterial infection. They develop in sealed brood combs, which are largely sterile. This is why the insects omit to protect themselves with immune reactions at this life stage. "This is biologically reasonable, because anything else would be quite a waste of energy and material," says Beier. After all, the developmental processes taking place in the cocoon are demanding enough.

Do Varroa mites carry bacteria?

The lack of immune responses during the time of pupation might spell doom for the European honey bees. This is due to the Varroa mite (Varroa destructor), a parasite that was introduced from Asia about three decades ago. "The mite is capable of wiping out entire bee colonies, because it transfers pathogenic viruses to the adult insects – as suggested previously," explains Professor Tautz, who is a beekeeper himself.

However, it is now conceivable that the mites pose a danger to the bees in yet another way: The female parasites penetrate into the brood cells and suck at the pupae. It cannot be excluded that they thereby transfer otherwise quite harmless bacteria to the pupae. This would certainly prove fatal to the pupae as the recent experiments of the Beegroup have shown.

Careful control of the parasites necessary

According to the researchers, there is reason to fear that the Varroa mite poses a far greater threat to bees than previously thought. Therefore, we are faced with the permanent and increasingly demanding task to ensure a careful and comprehensive control of this parasite in order to protect our honey bee populations.

"Antibacterial Immune Competence of Honey Bees (Apis mellifera) Is Adapted to Different Life Stages and Environmental Risks", Heike Gätschenberger, Klara Azzami, Jürgen Tautz, Hildburg Beier (2013), PLoS ONE 8(6): e66415. doi:10.1371/journal.pone.0066415

Go to the article in PLOS ONE: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0066415

Contact person

Prof. Dr. Hildburg Beier, Biocenter at the University of Würzburg, T +49 (0)931 31-84201, h.beier@biozentrum.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>