Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bee Pupae: Defenseless Against Infections

27.08.2013
The Varroa mite is capable of annihilating entire bee colonies. Until now, this has been attributed to viruses that are introduced into the hive by the mites. However, the parasites carry yet another danger to the bees as University of Würzburg researchers found out.

In the summer season, a hive includes up to 50,000 workers, several hundred drones and one queen, living in very close surroundings in a warm and humid atmosphere, which is also conducive to the growth of pathogenic bacteria. This might lead you to believe that infections spread easily in a bee hive.


Varroa mite females suck at two bee pupae, a drone pupa (left) and a worker pupa (right). The mites are only about one millimeter in size. Photo: Helga R. Heilmann

However, the bees are well protected against this risk. Firstly, they set great store on hive hygiene. Furthermore, young workers, drones and queens react to bacterial infections with several defense mechanisms of their innate immune system. Bee larvae are also capable of defending themselves effectively against bacteria. All this has been demonstrated in recent years by the Beegroup of Professor Jürgen Tautz at the Biocenter of the University of Würzburg.

Bacteria kill off bee pupae quickly

Still, the insects are defenseless at a certain stage of their development: After pupation of the larvae, their immune system stays completely inactive. This is reported in the journal PLOS ONE by the Würzburg scientists. When bee pupae were exposed to "harmless" Escherichia coli bacteria, this led to their death within only a few hours of infection. "The bacteria proliferated rapidly in the pupae, which apparently caused the death of the latter," says Professor Hildburg Beier, a member of the Beegroup.

In an intact bee hive, the pupae are usually well protected from bacterial infection. They develop in sealed brood combs, which are largely sterile. This is why the insects omit to protect themselves with immune reactions at this life stage. "This is biologically reasonable, because anything else would be quite a waste of energy and material," says Beier. After all, the developmental processes taking place in the cocoon are demanding enough.

Do Varroa mites carry bacteria?

The lack of immune responses during the time of pupation might spell doom for the European honey bees. This is due to the Varroa mite (Varroa destructor), a parasite that was introduced from Asia about three decades ago. "The mite is capable of wiping out entire bee colonies, because it transfers pathogenic viruses to the adult insects – as suggested previously," explains Professor Tautz, who is a beekeeper himself.

However, it is now conceivable that the mites pose a danger to the bees in yet another way: The female parasites penetrate into the brood cells and suck at the pupae. It cannot be excluded that they thereby transfer otherwise quite harmless bacteria to the pupae. This would certainly prove fatal to the pupae as the recent experiments of the Beegroup have shown.

Careful control of the parasites necessary

According to the researchers, there is reason to fear that the Varroa mite poses a far greater threat to bees than previously thought. Therefore, we are faced with the permanent and increasingly demanding task to ensure a careful and comprehensive control of this parasite in order to protect our honey bee populations.

"Antibacterial Immune Competence of Honey Bees (Apis mellifera) Is Adapted to Different Life Stages and Environmental Risks", Heike Gätschenberger, Klara Azzami, Jürgen Tautz, Hildburg Beier (2013), PLoS ONE 8(6): e66415. doi:10.1371/journal.pone.0066415

Go to the article in PLOS ONE: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0066415

Contact person

Prof. Dr. Hildburg Beier, Biocenter at the University of Würzburg, T +49 (0)931 31-84201, h.beier@biozentrum.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>