Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bee Colony Collapse Associated with Viral, Fungal Infection

11.10.2010
The sudden death of bee colonies since late 2006 across North America has stumped scientists. But today, researchers may have a greater understanding of the mysterious colony collapse disorder, said a Texas Tech University biologist.

Shan Bilimoria, a professor and molecular virologist, said the bees may be taking a one-two punch from both an insect virus and a fungus, which may be causing bees to die off by the billions.

Bilimoria is part of a team of researchers searching for the cause of the collapse. Led by research professor Jerry Bromenshenk from the University of Montana in Missoula, the group also includes virologists and chemists from the U.S. Army Edgewood Chemical Biological Center and the Instituto de Ecologica AC in Mexico.

Their study was published this week in the peer-reviewed journal PLoS ONE.

“At this stage, the study is showing an association of death rates of the bees with the virus and fungus present,” Bilimoria said. “Our contribution to this study confirms association. But even that doesn’t prove cause and effect. Not just yet.”

The mysterious colony deaths have caused major concern with scientists since much of agriculture depends on bees to pollinate crops.

To discover what might be attacking bee colonies, the team ground up dead bees that had succumbed to colony collapse disorder. Using analytical equipment, researchers discovered through spectroscopic analysis evidence of a moth virus called insect iridescent virus (IIV) 6 and a fungal parasite called Nosema.

The insect virus is closely related to another virus that wiped out bee populations 20 years ago in India, he said. Also, unlike previous research that found the deaths may be caused by a virus with RNA, the IIV 6 contains DNA.

“Our DNA discovery puts this field in a whole new direction,” he said.

Bilimoria said Texas Tech supplied the virus material for the experiments and were tested on bees with the fungus. Though an association between exposure and death was found, scientists don’t yet know if the two pathogens cause CCD or whether CCD colonies are more likely to succumb to the two pathogens.

“To prove cause and effect, we will have to isolate the virus and fungus from bee colony, and then reinfect with same virus and fungus,” Bilimoria said.

In the next part of the research project, Bilimoria will work to isolate the virus from infected bees.

“Once we isolate and identify the virus, we will have a way of monitoring it,” he said. “It is easier to fight the problem if we know what the culprit is.”

For a copy of a frequently-asked-questions sheet, please contact John Davis.

CONTACT: Shan Bilimoria, professor, Department of Biological Sciences, Texas Tech University, (806) 742-2710 ext. 287, (806) 239-7251 cell, or shan.bilimoria@ttu.edu

John Davis | Newswise Science News
Further information:
http://www.ttu.edu

Further reports about: Bee Colony Collapse CCD Collapse DNA Infection agriculture death rate fungus insect virus

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>