Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bee Colony Collapse Associated with Viral, Fungal Infection

11.10.2010
The sudden death of bee colonies since late 2006 across North America has stumped scientists. But today, researchers may have a greater understanding of the mysterious colony collapse disorder, said a Texas Tech University biologist.

Shan Bilimoria, a professor and molecular virologist, said the bees may be taking a one-two punch from both an insect virus and a fungus, which may be causing bees to die off by the billions.

Bilimoria is part of a team of researchers searching for the cause of the collapse. Led by research professor Jerry Bromenshenk from the University of Montana in Missoula, the group also includes virologists and chemists from the U.S. Army Edgewood Chemical Biological Center and the Instituto de Ecologica AC in Mexico.

Their study was published this week in the peer-reviewed journal PLoS ONE.

“At this stage, the study is showing an association of death rates of the bees with the virus and fungus present,” Bilimoria said. “Our contribution to this study confirms association. But even that doesn’t prove cause and effect. Not just yet.”

The mysterious colony deaths have caused major concern with scientists since much of agriculture depends on bees to pollinate crops.

To discover what might be attacking bee colonies, the team ground up dead bees that had succumbed to colony collapse disorder. Using analytical equipment, researchers discovered through spectroscopic analysis evidence of a moth virus called insect iridescent virus (IIV) 6 and a fungal parasite called Nosema.

The insect virus is closely related to another virus that wiped out bee populations 20 years ago in India, he said. Also, unlike previous research that found the deaths may be caused by a virus with RNA, the IIV 6 contains DNA.

“Our DNA discovery puts this field in a whole new direction,” he said.

Bilimoria said Texas Tech supplied the virus material for the experiments and were tested on bees with the fungus. Though an association between exposure and death was found, scientists don’t yet know if the two pathogens cause CCD or whether CCD colonies are more likely to succumb to the two pathogens.

“To prove cause and effect, we will have to isolate the virus and fungus from bee colony, and then reinfect with same virus and fungus,” Bilimoria said.

In the next part of the research project, Bilimoria will work to isolate the virus from infected bees.

“Once we isolate and identify the virus, we will have a way of monitoring it,” he said. “It is easier to fight the problem if we know what the culprit is.”

For a copy of a frequently-asked-questions sheet, please contact John Davis.

CONTACT: Shan Bilimoria, professor, Department of Biological Sciences, Texas Tech University, (806) 742-2710 ext. 287, (806) 239-7251 cell, or shan.bilimoria@ttu.edu

John Davis | Newswise Science News
Further information:
http://www.ttu.edu

Further reports about: Bee Colony Collapse CCD Collapse DNA Infection agriculture death rate fungus insect virus

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>