Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beating to the Rhythm of Heart Research

10.09.2008
Joint Collaboration between Scientists from Singapore and The Netherlands Reach New Milestone in Heart Disease Treatment

Scientists from the Institute of Medical Biology (IMB) and Bioprocessing Technology Institute (BTI), under Singapore’s Agency for Science, Technology and Research (A*STAR), and the University Medical Center Utrecht in the Netherlands have jointly developed a novel way to improve survival and recovery rate after a heart attack[1]. This method, the first non-cell based therapeutic application of human embryonic stem cells (hESCs), entails using secretions from stem cells.

Said Dr Lim Sai Kiang, IMB, who leads the group from Singapore, “Using secretion instead of cells allows us to circumvent many highly intractable problems such as tumour formation, immune compatibility, cell viability, delivery, costs and timeliness.” Unlike the more common approach of directly administering stem cells for therapy, this new method carries negligible risk of tumour formation or rejection by the body.

The scientists discovered that this approach could minimise heart injury after a heart attack. This is particularly important as the heart has a limited ability to regenerate. The preclinical work was carried out on pigs, the closest animal approximation to the human heart in terms of size, structure and function, and the findings were published in science journal Stem Cell Research. The research findings are especially important as they show that the new method can overcome the unwanted side effects of reperfusion— the best therapeutic option currently available to heart attack patients.

Reperfusion is the restoration of blood flow to the oxygen-deprived heart after a heart attack. Heart attack or Myocardial Infarction (MI) occurs when blood flow to part of the heart is blocked and the heart muscle is deprived of oxygen. If allowed to persist, prolonged oxygen deprivation causes cell death and irreversible loss of heart function, and inevitably progresses to heart failure and death. To minimise heart muscle damage and preserve the pumping action of the heart after MI occurs, early reperfusion by standard medical treatments such as angioplasty (commonly known as “ballooning”) or bypass surgery is carried out in the hospital. Despite this, most MI patients suffer additional irreversible cardiac muscle cell loss, ironically as a result of these treatments— a condition known as reperfusion injury.

The researchers found that the administration of secretion from stem cells minimised heart injury by enhancing reperfusion therapy and reducing tissue death by another 60%. Heart function was also markedly improved. By demonstrating the efficacy of this secretion in an experimental pig model, currently the best approximation to a human heart attack patient undergoing reperfusion therapy, the researchers have addressed the longstanding problem of reperfusion injury in the most clinically relevant experimental setting.

Said the advisor to the team of researchers in Singapore, Professor Lee Chuen-Neng, who is the Head of the Department of Cardiac, Thoracic and Vascular Surgery at the National University Hospital, Singapore and Chair of Surgery at the National University Health System, Singapore, “This is a major discovery of clinical significance. There are some problems and issues associated with the use of stem cells to treat heart attacks and blocked arteries in the heart, and with this new method, many of these issues are removed. Potentially, we may have an important way to treat heart attacks. More tests will need to be done and human trials planned.”

This discovery is all the more significant because the therapy for reperfusion injury remains an unmet need[2] despite three decades of huge resource investment, thousands of research papers and hundreds of experimental protocols. This preclinical study had come amidst an international call to improve the translation of preclinical experimental therapies for reperfusion injury to clinical applications.

As Singapore moves from basic science towards translational studies in the next phase of its biomedical push, rigorous preclinical testing and carefully designed studies such as this would be most critical in ensuring the success of clinical trials. Professor Birgit Lane, who is Executive Director of the IMB said, “This is a very exciting result from Dr Lim and her colleagues.

It paves the way for improved recovery after heart attack - a very practical outcome from stem cell research. It is a great example of what can be achieved when doctors and scientists work closely together. By sharing their specialist skills and knowledge, they can discover and refine new approaches to curing sick people. This targeting of research to find ways of combating illness and benefiting people faster is at the heart of what we aim to do at IMB.”

Joshua Woo | alfa
Further information:
http://www.a-star.edu.sg

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>