Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Beating to the Rhythm of Heart Research

Joint Collaboration between Scientists from Singapore and The Netherlands Reach New Milestone in Heart Disease Treatment

Scientists from the Institute of Medical Biology (IMB) and Bioprocessing Technology Institute (BTI), under Singapore’s Agency for Science, Technology and Research (A*STAR), and the University Medical Center Utrecht in the Netherlands have jointly developed a novel way to improve survival and recovery rate after a heart attack[1]. This method, the first non-cell based therapeutic application of human embryonic stem cells (hESCs), entails using secretions from stem cells.

Said Dr Lim Sai Kiang, IMB, who leads the group from Singapore, “Using secretion instead of cells allows us to circumvent many highly intractable problems such as tumour formation, immune compatibility, cell viability, delivery, costs and timeliness.” Unlike the more common approach of directly administering stem cells for therapy, this new method carries negligible risk of tumour formation or rejection by the body.

The scientists discovered that this approach could minimise heart injury after a heart attack. This is particularly important as the heart has a limited ability to regenerate. The preclinical work was carried out on pigs, the closest animal approximation to the human heart in terms of size, structure and function, and the findings were published in science journal Stem Cell Research. The research findings are especially important as they show that the new method can overcome the unwanted side effects of reperfusion— the best therapeutic option currently available to heart attack patients.

Reperfusion is the restoration of blood flow to the oxygen-deprived heart after a heart attack. Heart attack or Myocardial Infarction (MI) occurs when blood flow to part of the heart is blocked and the heart muscle is deprived of oxygen. If allowed to persist, prolonged oxygen deprivation causes cell death and irreversible loss of heart function, and inevitably progresses to heart failure and death. To minimise heart muscle damage and preserve the pumping action of the heart after MI occurs, early reperfusion by standard medical treatments such as angioplasty (commonly known as “ballooning”) or bypass surgery is carried out in the hospital. Despite this, most MI patients suffer additional irreversible cardiac muscle cell loss, ironically as a result of these treatments— a condition known as reperfusion injury.

The researchers found that the administration of secretion from stem cells minimised heart injury by enhancing reperfusion therapy and reducing tissue death by another 60%. Heart function was also markedly improved. By demonstrating the efficacy of this secretion in an experimental pig model, currently the best approximation to a human heart attack patient undergoing reperfusion therapy, the researchers have addressed the longstanding problem of reperfusion injury in the most clinically relevant experimental setting.

Said the advisor to the team of researchers in Singapore, Professor Lee Chuen-Neng, who is the Head of the Department of Cardiac, Thoracic and Vascular Surgery at the National University Hospital, Singapore and Chair of Surgery at the National University Health System, Singapore, “This is a major discovery of clinical significance. There are some problems and issues associated with the use of stem cells to treat heart attacks and blocked arteries in the heart, and with this new method, many of these issues are removed. Potentially, we may have an important way to treat heart attacks. More tests will need to be done and human trials planned.”

This discovery is all the more significant because the therapy for reperfusion injury remains an unmet need[2] despite three decades of huge resource investment, thousands of research papers and hundreds of experimental protocols. This preclinical study had come amidst an international call to improve the translation of preclinical experimental therapies for reperfusion injury to clinical applications.

As Singapore moves from basic science towards translational studies in the next phase of its biomedical push, rigorous preclinical testing and carefully designed studies such as this would be most critical in ensuring the success of clinical trials. Professor Birgit Lane, who is Executive Director of the IMB said, “This is a very exciting result from Dr Lim and her colleagues.

It paves the way for improved recovery after heart attack - a very practical outcome from stem cell research. It is a great example of what can be achieved when doctors and scientists work closely together. By sharing their specialist skills and knowledge, they can discover and refine new approaches to curing sick people. This targeting of research to find ways of combating illness and benefiting people faster is at the heart of what we aim to do at IMB.”

Joshua Woo | alfa
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>