Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beating to the Rhythm of Heart Research

10.09.2008
Joint Collaboration between Scientists from Singapore and The Netherlands Reach New Milestone in Heart Disease Treatment

Scientists from the Institute of Medical Biology (IMB) and Bioprocessing Technology Institute (BTI), under Singapore’s Agency for Science, Technology and Research (A*STAR), and the University Medical Center Utrecht in the Netherlands have jointly developed a novel way to improve survival and recovery rate after a heart attack[1]. This method, the first non-cell based therapeutic application of human embryonic stem cells (hESCs), entails using secretions from stem cells.

Said Dr Lim Sai Kiang, IMB, who leads the group from Singapore, “Using secretion instead of cells allows us to circumvent many highly intractable problems such as tumour formation, immune compatibility, cell viability, delivery, costs and timeliness.” Unlike the more common approach of directly administering stem cells for therapy, this new method carries negligible risk of tumour formation or rejection by the body.

The scientists discovered that this approach could minimise heart injury after a heart attack. This is particularly important as the heart has a limited ability to regenerate. The preclinical work was carried out on pigs, the closest animal approximation to the human heart in terms of size, structure and function, and the findings were published in science journal Stem Cell Research. The research findings are especially important as they show that the new method can overcome the unwanted side effects of reperfusion— the best therapeutic option currently available to heart attack patients.

Reperfusion is the restoration of blood flow to the oxygen-deprived heart after a heart attack. Heart attack or Myocardial Infarction (MI) occurs when blood flow to part of the heart is blocked and the heart muscle is deprived of oxygen. If allowed to persist, prolonged oxygen deprivation causes cell death and irreversible loss of heart function, and inevitably progresses to heart failure and death. To minimise heart muscle damage and preserve the pumping action of the heart after MI occurs, early reperfusion by standard medical treatments such as angioplasty (commonly known as “ballooning”) or bypass surgery is carried out in the hospital. Despite this, most MI patients suffer additional irreversible cardiac muscle cell loss, ironically as a result of these treatments— a condition known as reperfusion injury.

The researchers found that the administration of secretion from stem cells minimised heart injury by enhancing reperfusion therapy and reducing tissue death by another 60%. Heart function was also markedly improved. By demonstrating the efficacy of this secretion in an experimental pig model, currently the best approximation to a human heart attack patient undergoing reperfusion therapy, the researchers have addressed the longstanding problem of reperfusion injury in the most clinically relevant experimental setting.

Said the advisor to the team of researchers in Singapore, Professor Lee Chuen-Neng, who is the Head of the Department of Cardiac, Thoracic and Vascular Surgery at the National University Hospital, Singapore and Chair of Surgery at the National University Health System, Singapore, “This is a major discovery of clinical significance. There are some problems and issues associated with the use of stem cells to treat heart attacks and blocked arteries in the heart, and with this new method, many of these issues are removed. Potentially, we may have an important way to treat heart attacks. More tests will need to be done and human trials planned.”

This discovery is all the more significant because the therapy for reperfusion injury remains an unmet need[2] despite three decades of huge resource investment, thousands of research papers and hundreds of experimental protocols. This preclinical study had come amidst an international call to improve the translation of preclinical experimental therapies for reperfusion injury to clinical applications.

As Singapore moves from basic science towards translational studies in the next phase of its biomedical push, rigorous preclinical testing and carefully designed studies such as this would be most critical in ensuring the success of clinical trials. Professor Birgit Lane, who is Executive Director of the IMB said, “This is a very exciting result from Dr Lim and her colleagues.

It paves the way for improved recovery after heart attack - a very practical outcome from stem cell research. It is a great example of what can be achieved when doctors and scientists work closely together. By sharing their specialist skills and knowledge, they can discover and refine new approaches to curing sick people. This targeting of research to find ways of combating illness and benefiting people faster is at the heart of what we aim to do at IMB.”

Joshua Woo | alfa
Further information:
http://www.a-star.edu.sg

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>