Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beating to the Rhythm of Heart Research

10.09.2008
Joint Collaboration between Scientists from Singapore and The Netherlands Reach New Milestone in Heart Disease Treatment

Scientists from the Institute of Medical Biology (IMB) and Bioprocessing Technology Institute (BTI), under Singapore’s Agency for Science, Technology and Research (A*STAR), and the University Medical Center Utrecht in the Netherlands have jointly developed a novel way to improve survival and recovery rate after a heart attack[1]. This method, the first non-cell based therapeutic application of human embryonic stem cells (hESCs), entails using secretions from stem cells.

Said Dr Lim Sai Kiang, IMB, who leads the group from Singapore, “Using secretion instead of cells allows us to circumvent many highly intractable problems such as tumour formation, immune compatibility, cell viability, delivery, costs and timeliness.” Unlike the more common approach of directly administering stem cells for therapy, this new method carries negligible risk of tumour formation or rejection by the body.

The scientists discovered that this approach could minimise heart injury after a heart attack. This is particularly important as the heart has a limited ability to regenerate. The preclinical work was carried out on pigs, the closest animal approximation to the human heart in terms of size, structure and function, and the findings were published in science journal Stem Cell Research. The research findings are especially important as they show that the new method can overcome the unwanted side effects of reperfusion— the best therapeutic option currently available to heart attack patients.

Reperfusion is the restoration of blood flow to the oxygen-deprived heart after a heart attack. Heart attack or Myocardial Infarction (MI) occurs when blood flow to part of the heart is blocked and the heart muscle is deprived of oxygen. If allowed to persist, prolonged oxygen deprivation causes cell death and irreversible loss of heart function, and inevitably progresses to heart failure and death. To minimise heart muscle damage and preserve the pumping action of the heart after MI occurs, early reperfusion by standard medical treatments such as angioplasty (commonly known as “ballooning”) or bypass surgery is carried out in the hospital. Despite this, most MI patients suffer additional irreversible cardiac muscle cell loss, ironically as a result of these treatments— a condition known as reperfusion injury.

The researchers found that the administration of secretion from stem cells minimised heart injury by enhancing reperfusion therapy and reducing tissue death by another 60%. Heart function was also markedly improved. By demonstrating the efficacy of this secretion in an experimental pig model, currently the best approximation to a human heart attack patient undergoing reperfusion therapy, the researchers have addressed the longstanding problem of reperfusion injury in the most clinically relevant experimental setting.

Said the advisor to the team of researchers in Singapore, Professor Lee Chuen-Neng, who is the Head of the Department of Cardiac, Thoracic and Vascular Surgery at the National University Hospital, Singapore and Chair of Surgery at the National University Health System, Singapore, “This is a major discovery of clinical significance. There are some problems and issues associated with the use of stem cells to treat heart attacks and blocked arteries in the heart, and with this new method, many of these issues are removed. Potentially, we may have an important way to treat heart attacks. More tests will need to be done and human trials planned.”

This discovery is all the more significant because the therapy for reperfusion injury remains an unmet need[2] despite three decades of huge resource investment, thousands of research papers and hundreds of experimental protocols. This preclinical study had come amidst an international call to improve the translation of preclinical experimental therapies for reperfusion injury to clinical applications.

As Singapore moves from basic science towards translational studies in the next phase of its biomedical push, rigorous preclinical testing and carefully designed studies such as this would be most critical in ensuring the success of clinical trials. Professor Birgit Lane, who is Executive Director of the IMB said, “This is a very exciting result from Dr Lim and her colleagues.

It paves the way for improved recovery after heart attack - a very practical outcome from stem cell research. It is a great example of what can be achieved when doctors and scientists work closely together. By sharing their specialist skills and knowledge, they can discover and refine new approaches to curing sick people. This targeting of research to find ways of combating illness and benefiting people faster is at the heart of what we aim to do at IMB.”

Joshua Woo | alfa
Further information:
http://www.a-star.edu.sg

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>