Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bearded dragons show REM and slow wave sleep

29.04.2016

Brain sleep appeared early in vertebrate evolution

Behavioral sleep is ubiquitous among animals, from insects to man. In humans, sleep is also characterized by brain activity: periods of slow-wave activity are each followed by short phases of Rapid-Eye-Movement sleep (REM sleep).


Sleeping bearded dragon (Pogona vitticeps)

© MPI f. Brain Research/ S. Junek


Sleep constitutes an uninterrupted epoch of regular oscillations between two spectral profiles.

© MPI f. Brain Research/ M. Shein-Idelson, J. Ondracek, H.-P. Liaw, S. Reiter and G. Laurent

These electrical features of brain sleep, whose functions are not well understood, have so far been described only in mammals and birds, but not in reptiles, amphibians or fish. Yet, birds are reptiles—they are the feathered descendants of the now extinct dinosaurs.

How then did brain sleep evolve? Gilles Laurent and members of his laboratory at the Max Planck Institute for Brain Research in Frankfurt, Germany, describe for the first time REM and slow-wave sleep in a reptile, the Australian dragon Pogona vitticeps.

This suggests that brain sleep dates back at least to the evolution of the amniotes, that is, to the beginning of the colonization of terrestrial landmass by vertebrate animals. They reported their findings in the upcoming issue of Science.

Birds, reptiles and mammals are all amniotes, a clade of tetrapod vertebrates, whose eggs could survive outside water, hence enabling land colonization. Amniotes appeared ~320 million years ago, and quickly bifurcated into a group that led to the mammals (including us humans), and another that led to the reptiles and the birds.

Bearded dragons are a type of lizard that branched out of the common reptilian trunk some 250 millions ago, much earlier than the branch that would lead to the dinosaurs and the birds. A phenomenon observed in a lizard, a bird and a mammal would thus most likely have existed in their common ancestor.

Gilles Laurent and his group study the reptilian brain because of its simpler, ancestral design, to understand cortical function, dynamics and computation. In the midst of one of these studies, they observed that brain activity recorded from resting lizards during the night oscillated regularly between two states. The present work derives from this initial observation. They asked: are we seeing REM and slow-wave sleep?

Answering this question requires classifying neuronal activity patterns recorded from the brain, based on a number of statistical, dynamical and anatomical features and correlating them with observable behaviors, such as the presence or absence of rapid eye movements.

In their report, Laurent and his colleagues describe the existence of REM and slow-wave sleep in the Australian dragon, with many common features with mammalian sleep: a phase characterized by low frequency/high amplitude average brain activity and rare and bursty neuronal firing (slow-wave sleep); another characterized by awake-like brain activity and rapid eye movements. Another common feature with mammalian sleep was the coordinated activity of cortex with another area during slow-wave sleep: in dragons this other area is the so-called dorsal ventricular ridge. In mammals it is the hippocampus.

They also report interesting differences: for example, lizard sleep rhythm is extremely regular and fast: the lizard’s sleep cycle is about 80 seconds long at 27oC, vs. 30 minutes in cat or 60-90 minutes in humans. Also, while in lizards slow-wave and REM-sleep have roughly equal durations during each cycle, REM is much shorter then slow-wave sleep in mammals, and both short and irregular in birds. Overall, lizard sleep seems a lot simpler and may thus be closer to the ancestral mode of brain sleep.

How does one know that such evidence points to a common origin, rather than separate but convergent evolution of sleep in reptiles, birds and mammals? “Positing convergent evolution (two or three times in amniote evolution) of a complex phenomenon such as sleep brain dynamics is a lot less plausible than imagining a common origin.

Given the early branching out of the reptiles, additional evidence from several of reptilian branches such as turtles, lizards, or crocodiles will only increase the probability that we are looking at a common origin. The evidence, thus far, points to an origin of REM and slow-wave sleep at least as far back as the common ancestor of reptiles, birds and mammals, which lived about 320 million years ago”, explains Laurent. At that time the earth’s continents formed a single landmass.

The scientists will continue to explore brain activity during sleep and awake states, as a means to understand the common and essential features of vertebrate brain function.

Publication: Shein-Idelson, M., Ondracek, J., Liaw, H.-P., Reiter, S. and Laurent, G. (2016). Slow waves, sharp-waves, ripples and REM in sleeping dragons. Science (in press).

Weitere Informationen:

http://brain.mpg.de/news-events/news.html

Dr. Arjan Vink | Max-Planck-Institut für Hirnforschung
Further information:
http://www.brain.mpg.de/

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>