Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beans' defenses mean bacteria get evolutionary helping hand

14.09.2009
Bean plants' natural defences against bacterial infections could be unwittingly driving the evolution of more highly pathogenic bacteria, according to new research published today (10 September) in Current Biology.

The study sheds new light on how bacterial pathogens evolve and adapt to stresses from host plants. This information could help researchers develop new ways of tackling pathogens that cause extensive and costly damage to beans and other food crops.

The scientists from Imperial College London and the University of the West of England (UWE) focused on a bacterial pathogen called Pseudamonas syringae, which causes a disease called halo blight, in bean plants. Symptoms include brown spots on the leaves, surrounded by a yellow halo. The disease can cause bean plants to lose their leaves, wilt and die, and is a serious problem for farmers worldwide.

The research team observed that a French bean plant's defensive moves against infection caused P. syringae bacterial cells to 'swap' bits of DNA with each other. When one bacterial cell takes up DNA released by another like this, it is known as genetic transformation. This process, occurring within infected plant tissue, could speed up the evolution of more virulent forms of disease-causing microbes say the researchers.

Professor John Mansfield from Imperial College London's Department of Life Sciences, one of the authors of the new paper, explains: "In the course of fighting off infection, and putting the invading bacteria under stress, it seems that the plants inadvertently do them a big favour. By causing the bacteria to throw out selected fragments of their DNA, which can then be taken up by other bacteria cells, the plants are effectively stimulating the bacteria to evolve. For disease-causing bacteria, this means that mechanisms meant to disable them could actually contribute to their continued survival."

When a French bean plant is infected by P. syringae it defends itself by sending a suicide signal to the plant cells surrounding the bacteria. When the affected plant cells die they release antimicrobial compounds that are toxic to the microbes. The toxic environment places the bacterial cells under enormous stress.

The new study shows that along with restricting bacterial multiplication, the release of these toxins seems to stimulate P. syringae cells to cut out small sections of their own DNA containing genes linked to pathogenicity. These gene 'islands' are then thrown out of the bacterial cell, and absorbed and incorporated into the DNA of other bacteria within the plant.

Professor Mansfield and colleagues are not yet sure exactly how the suicide of nearby plant cells brings about this DNA separation and removal, but say their results could have a much wider implication for how scientists understand the relationship between pathogen, host and pathogen evolution.

Dr Dawn Arnold, co author of the study from UWE's School of Life Sciences, concluded: "Although this work involves plant-bacteria interactions it also has a wider significance in that it could lead to a greater understanding of how bacteria evade the immune system of different hosts including humans."

The research was funded by the Biotechnology and Biological Sciences Research Council (BBSRC).

Laura Gallagher | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>