Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beans' defenses mean bacteria get evolutionary helping hand

14.09.2009
Bean plants' natural defences against bacterial infections could be unwittingly driving the evolution of more highly pathogenic bacteria, according to new research published today (10 September) in Current Biology.

The study sheds new light on how bacterial pathogens evolve and adapt to stresses from host plants. This information could help researchers develop new ways of tackling pathogens that cause extensive and costly damage to beans and other food crops.

The scientists from Imperial College London and the University of the West of England (UWE) focused on a bacterial pathogen called Pseudamonas syringae, which causes a disease called halo blight, in bean plants. Symptoms include brown spots on the leaves, surrounded by a yellow halo. The disease can cause bean plants to lose their leaves, wilt and die, and is a serious problem for farmers worldwide.

The research team observed that a French bean plant's defensive moves against infection caused P. syringae bacterial cells to 'swap' bits of DNA with each other. When one bacterial cell takes up DNA released by another like this, it is known as genetic transformation. This process, occurring within infected plant tissue, could speed up the evolution of more virulent forms of disease-causing microbes say the researchers.

Professor John Mansfield from Imperial College London's Department of Life Sciences, one of the authors of the new paper, explains: "In the course of fighting off infection, and putting the invading bacteria under stress, it seems that the plants inadvertently do them a big favour. By causing the bacteria to throw out selected fragments of their DNA, which can then be taken up by other bacteria cells, the plants are effectively stimulating the bacteria to evolve. For disease-causing bacteria, this means that mechanisms meant to disable them could actually contribute to their continued survival."

When a French bean plant is infected by P. syringae it defends itself by sending a suicide signal to the plant cells surrounding the bacteria. When the affected plant cells die they release antimicrobial compounds that are toxic to the microbes. The toxic environment places the bacterial cells under enormous stress.

The new study shows that along with restricting bacterial multiplication, the release of these toxins seems to stimulate P. syringae cells to cut out small sections of their own DNA containing genes linked to pathogenicity. These gene 'islands' are then thrown out of the bacterial cell, and absorbed and incorporated into the DNA of other bacteria within the plant.

Professor Mansfield and colleagues are not yet sure exactly how the suicide of nearby plant cells brings about this DNA separation and removal, but say their results could have a much wider implication for how scientists understand the relationship between pathogen, host and pathogen evolution.

Dr Dawn Arnold, co author of the study from UWE's School of Life Sciences, concluded: "Although this work involves plant-bacteria interactions it also has a wider significance in that it could lead to a greater understanding of how bacteria evade the immune system of different hosts including humans."

The research was funded by the Biotechnology and Biological Sciences Research Council (BBSRC).

Laura Gallagher | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>