Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bcl6 gene sculpts helper T cell to boost antibody production

27.07.2009
Tfh cells work in structures that are hotbeds for B cell genetic mutation

Expression of a single gene programs an immune system helper T cell that fuels rapid growth and diversification of antibodies in a cellular structure implicated in autoimmune diseases and development of B cell lymphoma, scientists at The University of Texas M. D. Anderson Cancer Center reported today in Science Express, the advance online publication of the journal Science.

The gene is Bcl6, which the team found plays the crucial role in differentiating a naïve T cell into a T follicular helper cell (Tfh).

"Tfh cells were first noticed in structures called germinal centers found in the lymphoid system - in lymph nodes and the spleen," said senior author Chen Dong, Ph.D., professor in M. D. Anderson's Department of Immunology. Germinal centers are powerful machines that churn out lots of antibodies.

In the adaptive immune system, B cells present an antigen - a distinctive piece of an invading bacterium or virus - to T cells. The bound antigen converts a naïve T cell to a helper T cell that secretes cytokines which help the B cells expand and produce a large volume of antibodies to destroy an intruder.

Tfh cells are concentrated with B cells in germinal centers, where they play a helper T cell's traditional role in B cell proliferation and antibody development.

"In germinal centers, the B cells not only proliferate but they also undergo hypermutation in their immunoglobulin genes so they can produce a diverse class of antibodies," Dong said. "These mutations also allow production of antibodies with stronger affinity for their target antigens."

There are pitfalls to this process. Tfh cells and germinal centers have been implicated in antibody-mediated autoimmune diseases such as lupus and rheumatoid arthritis, Dong noted. In these diseases, the germinal centers are likely producing the wrong type of antibody at great volume.

Genetic hypermutation among B cells in germinal centers creates a hotbed of genomic instability, which gives rise to some types of B cell lymphoma, Dong said.

The scientists set out to understand the role of Bcl6, which is short for B-cell lymphoma 6, a transcription factor previously shown to be selectively expressed in Tfh cells.

Last year, Dong and his colleagues reported in the journal Immunity that cytokines IL-6 and IL-21 drive the differentiation of Tfh cells. However, how these cytokines work had been unclear. In the current study, the team reported that that IL-6 and IL-21 induce expression of Bcl6 in the absence of transforming growth factor beta (TGFß) to drive T cell differentiation into Tfh. "Not only is Bcl6 a transcription factor expressed by Tfh cells, it also has a major function in generating these cells," Dong said.

When TGFß is present with IL-6 and IL-21, T cells differentiate into pro-inflammatory Th17 helper cells.

Another set of experiments showed that Bcl6 expression inhibits a T cell from differentiating into Th17, Th1 or Th2 cells, three other lines of helper cell

Finally, when the Bcl6 gene was knocked out in a mouse model, Tfh was nowhere to be found. "Bcl6 is absolutely required for Tfh generation and it's also important because it blocks other pathways that would lead the T cell into other helper cell types," Dong said.

Solving the molecular programming of Tfh establishes it as the fifth distinct lineage of helper T cell.

Dong and colleagues will continue to characterize Tfh and its relationship to other T helper cells. Dong is co-discoverer of the Th17 cell, which he and colleagues identified as the third T helper cell lineage when conventional wisdom held that there were only two such lines. They also showed that Th17 secretes interleukin-17, which is implicated in both inflammatory and autoimmune diseases.

Co-authors with Dong are first author Roza I. Nurieva, Ph.D., Yeonseok Chung, Ph.D., Gustavo J. Martinez, Xuexian O. Yang, Ph.D., Shinya Tanaka, Ph.D., Tatyana D. Matskevitch, and Yi-Hong Wang, all of M. D. Anderson's Department of Immunology.

The work is supported by research grants from the National Institute of Allergy and Infectious Diseases, the National Institute of Arthritis and Musculoskeletal and Skin Diseases, M. D. Anderson Cancer Center's Center for Targeted Therapy and the Leukemia and Lymphoma Society. Martinez is a Schissler Foundation Fellow in cancer research and a student in The University of Texas Graduate School of Biomedical Sciences, a joint program of M. D. Anderson and the UT Health Science Center at Houston. Chung has a postdoctoral fellowship grant from the Korea Science and Engineering Foundation. Nurieva is recipient of a Scientist Development Grant from the American Heart Association, and Dong is a Leukemia and Lymphoma Society Scholar and a Trust Fellow of M. D. Anderson Cancer Center.

About M. D. Anderson

The University of Texas M. D. Anderson Cancer Center in Houston ranks as one of the world's most respected centers focused on cancer patient care, research, education and prevention. M. D. Anderson is one of only 40 comprehensive cancer centers designated by the National Cancer Institute. For four of the past six years, including 2008, M. D. Anderson has ranked No. 1 in cancer care in "America's Best Hospitals," a survey published annually in U.S. News & World Report.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>