Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bcl6 gene sculpts helper T cell to boost antibody production

27.07.2009
Tfh cells work in structures that are hotbeds for B cell genetic mutation

Expression of a single gene programs an immune system helper T cell that fuels rapid growth and diversification of antibodies in a cellular structure implicated in autoimmune diseases and development of B cell lymphoma, scientists at The University of Texas M. D. Anderson Cancer Center reported today in Science Express, the advance online publication of the journal Science.

The gene is Bcl6, which the team found plays the crucial role in differentiating a naïve T cell into a T follicular helper cell (Tfh).

"Tfh cells were first noticed in structures called germinal centers found in the lymphoid system - in lymph nodes and the spleen," said senior author Chen Dong, Ph.D., professor in M. D. Anderson's Department of Immunology. Germinal centers are powerful machines that churn out lots of antibodies.

In the adaptive immune system, B cells present an antigen - a distinctive piece of an invading bacterium or virus - to T cells. The bound antigen converts a naïve T cell to a helper T cell that secretes cytokines which help the B cells expand and produce a large volume of antibodies to destroy an intruder.

Tfh cells are concentrated with B cells in germinal centers, where they play a helper T cell's traditional role in B cell proliferation and antibody development.

"In germinal centers, the B cells not only proliferate but they also undergo hypermutation in their immunoglobulin genes so they can produce a diverse class of antibodies," Dong said. "These mutations also allow production of antibodies with stronger affinity for their target antigens."

There are pitfalls to this process. Tfh cells and germinal centers have been implicated in antibody-mediated autoimmune diseases such as lupus and rheumatoid arthritis, Dong noted. In these diseases, the germinal centers are likely producing the wrong type of antibody at great volume.

Genetic hypermutation among B cells in germinal centers creates a hotbed of genomic instability, which gives rise to some types of B cell lymphoma, Dong said.

The scientists set out to understand the role of Bcl6, which is short for B-cell lymphoma 6, a transcription factor previously shown to be selectively expressed in Tfh cells.

Last year, Dong and his colleagues reported in the journal Immunity that cytokines IL-6 and IL-21 drive the differentiation of Tfh cells. However, how these cytokines work had been unclear. In the current study, the team reported that that IL-6 and IL-21 induce expression of Bcl6 in the absence of transforming growth factor beta (TGFß) to drive T cell differentiation into Tfh. "Not only is Bcl6 a transcription factor expressed by Tfh cells, it also has a major function in generating these cells," Dong said.

When TGFß is present with IL-6 and IL-21, T cells differentiate into pro-inflammatory Th17 helper cells.

Another set of experiments showed that Bcl6 expression inhibits a T cell from differentiating into Th17, Th1 or Th2 cells, three other lines of helper cell

Finally, when the Bcl6 gene was knocked out in a mouse model, Tfh was nowhere to be found. "Bcl6 is absolutely required for Tfh generation and it's also important because it blocks other pathways that would lead the T cell into other helper cell types," Dong said.

Solving the molecular programming of Tfh establishes it as the fifth distinct lineage of helper T cell.

Dong and colleagues will continue to characterize Tfh and its relationship to other T helper cells. Dong is co-discoverer of the Th17 cell, which he and colleagues identified as the third T helper cell lineage when conventional wisdom held that there were only two such lines. They also showed that Th17 secretes interleukin-17, which is implicated in both inflammatory and autoimmune diseases.

Co-authors with Dong are first author Roza I. Nurieva, Ph.D., Yeonseok Chung, Ph.D., Gustavo J. Martinez, Xuexian O. Yang, Ph.D., Shinya Tanaka, Ph.D., Tatyana D. Matskevitch, and Yi-Hong Wang, all of M. D. Anderson's Department of Immunology.

The work is supported by research grants from the National Institute of Allergy and Infectious Diseases, the National Institute of Arthritis and Musculoskeletal and Skin Diseases, M. D. Anderson Cancer Center's Center for Targeted Therapy and the Leukemia and Lymphoma Society. Martinez is a Schissler Foundation Fellow in cancer research and a student in The University of Texas Graduate School of Biomedical Sciences, a joint program of M. D. Anderson and the UT Health Science Center at Houston. Chung has a postdoctoral fellowship grant from the Korea Science and Engineering Foundation. Nurieva is recipient of a Scientist Development Grant from the American Heart Association, and Dong is a Leukemia and Lymphoma Society Scholar and a Trust Fellow of M. D. Anderson Cancer Center.

About M. D. Anderson

The University of Texas M. D. Anderson Cancer Center in Houston ranks as one of the world's most respected centers focused on cancer patient care, research, education and prevention. M. D. Anderson is one of only 40 comprehensive cancer centers designated by the National Cancer Institute. For four of the past six years, including 2008, M. D. Anderson has ranked No. 1 in cancer care in "America's Best Hospitals," a survey published annually in U.S. News & World Report.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>