Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First battle won with antibodies

08.11.2010
Bacteria that are resistant to antibodies pose a threat, particularly to people who are sick or feeble. In the search for new drugs, scientists from the University of Würzburg have made a breakthrough.

Every year, more than four million patients in Europe develop an infection while staying in hospital – this is because people with ill health are more susceptible than those who are healthy. Responsibility for these so-called hospital infections generally lies with the species of bacteria known as Staphylococcus aureus.


Staphylococcus aureus bacteria (magnification 50,000x). Photo: United States Department of Agriculture

The acronym MRSA has achieved a degree of notoriety in this situation. It denotes strains of the Staphylococcus bacteria that are resistant to the antibiotic methicillin and which are almost impossible to combat using other active agents as well.

Staphylococcus aureus bacteria are also commonly found on the skin of many healthy people where they tend not to cause any problems. But if these pathogens find their way inside the bodies of patients with weakened immune systems, they cause inflammations that are very difficult to cure.

Treatment for resistant bacteria

A promising approach to treating such infections has now been discovered by scientists from the University of Würzburg together with colleagues from the Helmholtz Center for Infection Research in Braunschweig. It is covered in the current issue of the journal Antimicrobial Agents and Chemotherapy.

“We have succeeded in activating a defense mechanism against Staphylococcus pathogens in mice with the help of antibodies,” says Dr. Udo Lorenz from the university’s Department of Surgery I. Together with outside lecturer Dr. Knut Ohlsen from the Institute for Molecular Infection Biology, he has spent the last few years pursuing the idea of combating antibiotic-resistant bacteria with antibodies.

How antibodies work

The principle behind them: certain proteins, known as antibodies, are capable of attaching themselves to a very specific point on the surface of the bacterium. Once there, they can have the following different effects: no effect at all, as the worst-case scenario; as a better scenario, they neutralize the bacterium, preventing it from becoming active again; and, in the ideal scenario, they cause the body’s own immune system to destroy the bacteria.

Activating the immune effector cells: Lorenz and Ohlsen have now managed to do this in mice using an antibody that they themselves have developed. “We were able to show that the rate of bacteria destruction increased by 30 percent after the antibody was administered,” says Lorenz. 30 percent: a "truly dramatic advantage that could mean the difference between death and survival,” explains the medic.

The step from mouse to man

As the next step in their work, the researchers now want to transfer the antibody from mice to people. To ensure that there will be no undesirable rejection reactions, the entire molecule will need to be “humanized”. “We will take only the part of the antibody that docks to the bacterium and will build the rest of the molecule artificially so that it is suitable for people,” says Lorenz.

Once that has been done, the two scientists intend to make a start on the corresponding studies as soon as possible. If everything goes according to plan, Lorenz expects the first clinical study to take place at the end of 2012.

Plan to found a company

For their research into new immunotherapy to treat hospital infections involving resistant Staphylococcus aureus bacteria, Lorenz and Ohlsen are planning to found their own company shortly, which will be called: SmartmAb

SmartmAb will be given the task of developing the mouse antibody for use in people to the point where it is ready for its first clinical trial as a drug. The scientists will then seek to work with a partner from the pharmaceuticals industry on the steps that follow until the drug is ready for the market. The long-term goal is to establish a company that will seek to develop other immunotherapeutics to combat infectious agents based on the first antibodies.

The company’s founders will be receiving financial support from the Federal Ministry of Education and Research. They managed to beat 54 other applicants in the GO-Bio competition and will now be given around three million euros to progress their idea and create a marketable product.

“Functional antibodies targeting IsaA of Staphylococcus aureus augment host immune response and open new perspectives for antibacterial therapy”. Udo Lorenz, Birgit Lorenz, Tim Schmitter, Karin Streker, Christian Erck, Jürgen Wehland, Joachim Nickel, Bastian Zimmermann and Knut Ohlsen. Antimicrobial Agents and Chemotherapy, doi:10.1128/AAC.01144-10

Contact

Dr. Udo Lorenz, T +49 (0)931 201 38314, u.lorenz@mail.uni-wuerzburg.de
Dr. Knut Ohlsen, T +49 (0)931 31-82155, knut.ohlsen@mail.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>