Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Battle of the Blood Clots

11.10.2013
Tailored glycopolymers as anticoagulant heparin mimetics

One of the risks of any large operation is the occurrence of blood clots. To prevent this, patients are routinely given the anticoagulant heparin or related drugs. American scientists have now introduced a new approach to the production of synthetic heparin mimetics with better activity profiles.



Heparin has been used as an anticoagulant since 1935 to both treat and prevent the deep vein thrombosis that can result from operations, blood transfusions, or dialysis. Heparin is a substance produced by the body and consists of long chains of sugar (saccharide) molecules. The sugar building blocks contain a large number of sulfate groups.

Because heparin is obtained from animal tissues, its use does pose some problems. Contamination may lead to health risks. Furthermore, batches of the drug are often not homogeneous so the effectiveness of a given dose must be calculated case by case. In about 3 % of patients, long-term treatment with heparin leads to a dangerous autoimmune disease.

Low-molecular-weight drugs such as Arixtra, which contains only five sugar groups, have been developed as an alternative. Their disadvantage is the very complex and expensive process used to make them.

Linda C. Hsieh-Wilson and her team at the California Institute of Technology in Pasadena have now uncovered an interesting new angle: synthetic glycopolymers, long chains of molecules that have sugar molecules as side groups. The researchers chose to use two sugars typically found in heparin as side groups.

One of these sugars was equipped with an additional sulfate group. The synthesis of such glycopolymers is much simpler than the synthesis of natural polysaccharides, but it is still a complex undertaking, and it is made more difficult in this case because of the need to attach sulfate groups in a controlled fashion. The team was able to use a ring-opening metathesis polymerization reaction (ROMP) to make polymer chains of varying length with a maximum of 45 units.

The longer molecular chains demonstrate stronger activity than anticoagulants currently in clinical use. The additional sulfate group is critical to this effectiveness. Interestingly, systematic changes to the length of the chain and pattern of sulfate groups allow for fine-tuning of the anticoagulant effect. This makes it possible to make drugs with different activities from those previously in clinical use. For example, the glycopolymer containing 45 building blocks targeted the two major branches of the blood coagulation cascade to a different extent than both the small molecule and heparin polysaccharide drugs.

About the Author
Dr. Linda Hsieh-Wilson is a Professor of Chemistry at the California Institute of Technology and an Investigator at the Howard Hughes Medical Institute. Her research focuses on the application of organic chemistry to probe the roles of carbohydrates and protein glysosylation in neurobiology and cancer, and has been recognized by multiple awards.
Author: Linda C. Hsieh-Wilson, California Institute of Technology, Pasadena (USA), http://chemistry.caltech.edu/~fucose/contact.html
Title: Tailored Glycopolymers as Anticoagulant Heparin Mimetics
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201306968

Linda C. Hsieh-Wilson | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>