Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Battery up Your Sleeve


Elastic wire-shaped lithium ion batteries with high electrochemical performance

Flexible smartphones, “intelligent” bracelets, glasses with a built-in computer: for these trends to take off, we need suitable power systems. Chinese scientists have now developed a wire-shaped lithium ion battery that contains electrodes consisting of two composite yarns made of carbon nanotubes and lithium titanium oxide or lithium manganese oxide. As the researchers report in the journal Angewandte Chemie, they were able to weave their batteries into light, flexible, elastic, and safe textile batteries with a high energy density.

Previous methods for producing wire-shaped electrochemical supercapacitors by twisting two fiber electrodes together resulted in systems with inferior performance that prevented them from being brought to the market. Lithium ion batteries can attain significantly higher energy density, but have not previously been produced in wire form.

In addition to other barriers, the safety problems associated with lithium ion batteries really come into play. The source of the safety problem is dendritic lithium, which can form during over-charging, “growing” out of the anode and causing a short circuit. This can cause the battery to ignite. This seems especially critical for wire-shaped batteries that can be stretched, twisted, and bent during use.

A team led by Huisheng Peng from Fudan University in Shanghai has now succeeded in producing wire-shaped lithium ion batteries that have a high energy density and are also safe. Their success results from the special structure as well as the materials used. The anode and cathode are two fibers made of parallel multiwalled carbon nanotubes that contain either lithium titanium oxide (LTO) or lithium manganese oxide (LMO) particles, respectively.

When the battery is charging, lithium ions are transferred from the LMO lattice to the electrolyte and then into the LTO lattice of the anode. The reverse process occurs as the battery is being discharged. Because the Li insertion takes place at ~1.5 V (vs. Li/Li+) for the applied LTO composite electrode, the chance of short circuit caused by dendritic lithium would be small and therefore the batteries are safe.

The parallel arrangements of continuous carbon nanotubes hold the nanoparticles; they are also efficient pathways for charge transport and serve as current collectors. The two electrode yarns are arranged in parallel, separated by a layer of insulator, and enclosed in a heat-shrinkable tube.

To make the wires elastic, they can be wrapped around an elastic fiber such as polydimethylsiloxane and coated with a thin-layer gel electrolyte. Neither repeated stretching to twice its original length nor thousands of deformation cycles reduces the battery capacity.

The wire-shaped batteries can be spun into long fibers and woven into a fabric that can be incorporated into textiles.

About the Author

Dr. Huisheng Peng is a Professor of Department of Macromolecular Science and Laboratory of Advanced Materials at Fudan University. His research centers on functional composite materials and their energy applications. Peng and co-workers created aligned carbon nanotube/polymer composites and developed novel wire-shaped solar cells, Li-ion batteries, and supercapacitors.

Author: Huisheng Peng, Fudan University, Shanghai (China),

Title: Elastic and Wearable Wire-Shaped Lithium-Ion Battery with High Electrochemical Performance

Angewandte Chemie International Edition, Permalink to the article:

Huisheng Peng | Angewandte Chemie

Further reports about: batteries battery circuit dendritic elastic electrode electrodes electrolyte fiber fibers lattice manganese materials titanium

More articles from Life Sciences:

nachricht High-arctic butterflies shrink with rising temperatures
07.10.2015 | Aarhus University

nachricht Long-term contraception in a single shot
07.10.2015 | California Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

Im Focus: High-speed march through a layer of graphene

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität have made simulations of the processes that happen when a layer of carbon atoms is irradiated with strong laser light.

Electrons hit by strong laser pulses change their location on ultrashort timescales, i.e. within a couple of attoseconds (1 as = 10 to the minus 18 sec). In...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

NASA provides an infrared look at Hurricane Joaquin over time

08.10.2015 | Earth Sciences

Theoretical computer science provides answers to data privacy problem

08.10.2015 | Information Technology

Stellar desk in wave-like motion

08.10.2015 | Physics and Astronomy

More VideoLinks >>>