Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Battery of tests on cancer cells shows them as 'squishy,' yet tactically strong

29.04.2013
Student researchers get a new view of the dynamics of cancer cells as they metastasize

A team of student researchers and their professors from 20 laboratories around the country have gotten a new view of cancer cells. The work could shed light on the transforming physical properties of these cells as they metastasize, said Jack R. Staunton, a Ph.D. candidate at Arizona State University in the lab of Prof. Robert Ros, and the lead author of a paper reporting on the topic.

Metastasis is a critical step in the progression of cancer. It is when the cancer spreads from one organ or part to another. While much is known about metastasis, it remains an incomplete understanding of the physical biology of the transition.

To get a better understanding of metastasis, more than 95 graduate students, post docs and professors in a variety of laboratories across the U.S. subjected two cell lines to a battery of high-tech tests and measurements. Their results, outlined in the paper "A physical sciences network characterization of non-tumorigenic and metastatic cells," were published today (April 26, 2013) in Scientific Reports.

The researchers performed coordinated molecular and biophysical studies of non-malignant and metastatic breast cell lines to learn more about what happens to a cell when it transitions to a metastatic state.

Each laboratory is part of the National Cancer Institute's Physical Sciences Oncology Center (PSOC), a network of 12 centers devoted to understanding the physical sciences of cancer. ASU's center, the Center for the Convergence of Physical Science and Cancer Biology, is led by Prof. Paul Davies.

Each PS-OC was supplied with identical cell lines and common reagents, and considerable effort was made to ensure that all the conditions were standardized and documented at regular intervals. Staunton said the ASU group made three contributions to the study.

Other ASU researchers involved in the project and co-authors on the paper are: Alexander Fuhrmann, Vivek Nandakumar, Laimonas Kelbauskas, Patti Senechal, Courtney Hemphill, Roger H. Johnson and Deirdre Meldrum.

"We compared the stiffness of normal breast cells and highly metastatic breast cancer cells, and found the cancer cells to be significantly more 'squishy' or deformable," Staunton said. "This makes sense because in order for a cell to metastasize, it has to squeeze through tight passages in the lymphatics and microvasculature, so being squishy helps cancer cells spread through the body."

"We also looked at the morphology of their nuclei," he added. "The cancer cell nuclei were found to have a characteristic 'crushed beach-ball' shape that might correspond to the abnormal chromosomal rearrangements associated with cancer."

"Finally, we took individual cells, put each one in an airtight chamber, and measured how much oxygen they consumed," Staunton said. "This tells us about their metabolism. We found the cancer cells use less oxygen, relying more on glycolysis, kind of like what bacteria and yeast do."

Taken together, researchers at the 12 PSOC's used some 20 distinct techniques, including atomic force microscopy, ballistic intracellular nano-rheology, cell surface receptor expression levels, differential interference contrast microscopy, micro-patterning and extracellular matrix secretion, and traction force microscopy.

The work has enabled a comprehensive cataloging and comparison of the physical characteristics of non-malignant and metastatic cells, and the molecular signatures associated with those characteristics. This made it possible to identify unique relationships between observations, Staunton said.

"We were surprised that even though the cancer cells are softer, they are able to exert more contractile forces on the fibers surrounding them – which was determined at the Cornell University PSOC by a method called traction force microscopy. This pair of characteristics is somewhat contradictory from a purely physical perspective, but it makes sense for a cancer cell, since both traits improve their chances of metastasizing. Understanding why is still an active area of research," explained Staunton, who is working towards his doctorate in physics.

"Another interesting finding was that a protein called CD44, which doubles as a cancer stem cell marker and as a molecule that helps the cell stick to certain fibers in the extracellular matrix, is equally abundant in the normal and cancer cells. But in the cancer cells the proteins don't make it to the cell surface," he added.

"For some reason they stay inside the cytoplasm, so the cancer cells are not as sticky," added Staunton whose hometown is Buffalo, N.Y. "This is another trait that contributes to their ability to spread through the body."

The PSOC network went to great lengths to have all of the studies performed under comparable conditions. While the cell lines studied are well understood, part of the effort for the network was to prove they could consistently coordinate the research.

Staunton, who has been involved in ASU's center since its inception, says the experience has helped his growth as a researcher.

"It is the perfect habitat for budding scientists and for transdisciplinary collaborations," he said.

Source:
Jack "Rory" Staunton, (480) 809-7212
Media contact:
Skip Derra, (480) 965-4823; skip.derra@asu.edu

Skip Derra | EurekAlert!
Further information:
http://www.asu.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>