Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bats use the evening sky’s polarization pattern for orientation

22.07.2014

Max Planck scientists discover new sensory capability in a mammal

Animals can use varying sensory modalities for orientation, some of which might be very different from ours. Some bird species for example take the polarization pattern produced by sunlight in the atmosphere to calibrate their orientation systems.


Greater mouse-eared bat taking off.

© MPI f. Ornithology/ Leitner


Bats are watching the sunset from their experimental boxes.

© MPI f. Ornithology/ Leitner

Now researchers from the Max Planck Institute for Ornithology in Seewiesen, Germany, and Queen’s University Belfast have discovered with colleagues from Israel that a night active mammal, the greater mouse-eared bat, has the capability to orient using polarized light. These bats use the polarization pattern of the evening sky to calibrate their inner compass.

In the course of evolution manifold sensory systems developed which allowed animals varying possibilities to perceive their environment. Many insect species for example, but also some fish, amphibians, reptiles and birds can see polarized light. Polarized light forms as a result of sunlight being scattered in the atmosphere.

The sky’s polarization pattern can be used by animals as a compass, well-known examples being the orientation of honeybees, desert ants or migratory birds. Even humans can perceive polarized light to some degree.

Subject to certain conditions we can see a so called Haidinger’s brush, a diffuse yellowish form, which however, has no known function. The fact that mammals can also make use of this sensory perception was not known so far.

An international team of bat researchers including Stefan Greif from the Max Planck Institute for Ornithology, Seewiesen, and from the Queen’s University Belfast now found exactly that.

Their study shows that the greater mouse-eared bat (Myotis myotis) can use the polarized light of the evening sky to calibrate their orientation system, which is based on the Earth’s magnetic field.

The researchers caught 70 female mouse-eared bats in a cave in North-eastern Bulgaria. During dusk they exposed half of the bats to a polarization direction which was shifted 90 degrees from the natural spectrum.

The other half of the animals was placed in similar experimental boxes but with a natural polarization direction. Long after nightfall the bats were brought to two different sites some 20 kilometres away from their home roost. There they were released after the scientists equipped them with tiny radio transmitters to follow their flight trajectories on their way back to the cave.

Those animals that experienced a 90 degrees shifted polarization pattern at sunset, vanished in a direction which deviated about 90 degrees from the control group. With this simple experiment the researchers showed for the first time that bats can use the polarization pattern of the evening sky to calibrate their inner compass for orientation. The precise mechanism however, is still unknown so far.

“Further behavioural and physiological studies are necessary to understand this fascinating new sensory capability”, says Stefan Greif, lead author of this study.

Contact 

Original publication

 
Stefan Greif, Ivailo Borissov, Yossi Yovel, Richard A. Holland
A functional role of the sky’s polarization pattern for orientation in the greater mouse-eared bat
Nature Communications, published online 22.07.2014 

Stefan Greif | Max-Planck-Institute
Further information:
http://www.mpg.de/8313923/polarized_light_bats

Further reports about: Ornithology atmosphere bats orientation polarization sensory sunlight

More articles from Life Sciences:

nachricht More detailed analysis of how cells react to stress
08.02.2016 | Universität Zürich

nachricht A new potential biomarker for cancer imaging
05.02.2016 | Universiti Putra Malaysia (UPM)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: From allergens to anodes: Pollen derived battery electrodes

Pollens, the bane of allergy sufferers, could represent a boon for battery makers: Recent research has suggested their potential use as anodes in lithium-ion batteries.

"Our findings have demonstrated that renewable pollens could produce carbon architectures for anode applications in energy storage devices," said Vilas Pol, an...

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

Im Focus: Microscopy: Nine at one blow

Advance in biomedical imaging: The University of Würzburg's Biocenter has enhanced fluorescence microscopy to label and visualise up to nine different cell structures simultaneously.

Fluorescence microscopy allows researchers to visualise biomolecules in cells. They label the molecules using fluorescent probes, excite them with light and...

Im Focus: NASA's ICESat-2 equipped with unique 3-D manufactured part

NASA's follow-on to the successful ICESat mission will employ a never-before-flown technique for determining the topography of ice sheets and the thickness of sea ice, but that won't be the only first for this mission.

Slated for launch in 2018, NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) also will carry a 3-D printed part made of polyetherketoneketone (PEKK),...

Im Focus: Sinking islands: Does the rise of sea level endanger the Takuu Atoll in the Pacific?

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister picture is being painted evoking the demise of the island states and their cultures. Are the effects of sea-level rise already noticeable on reef islands? Scientists from the ZMT have now answered this question for the Takuu Atoll, a group of Pacific islands, located northeast of Papua New Guinea.

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

DATE 2016 Highlighting Automotive and Secure Systems

26.01.2016 | Event News

 
Latest News

Ocean acidification makes coralline algae less robust

08.02.2016 | Earth Sciences

Online shopping might not be as green as we thought

08.02.2016 | Studies and Analyses

Proteomics and precision medicine

08.02.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>