Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BASF researchers develop new catalyst for the Fischer-Tropsch synthesis

29.09.2008
Starting into the future with a flexible raw material base / Process for manufacture of olefins from synthesis gas will further strengthen BASF Verbund over the long term

The high prices of naphtha (crude petroleum) as a feedstock for steam crackers are prompting the chemical industry to reevaluate alternative approaches to securing raw material supplies.

One long-known process is the Fischer-Tropsch synthesis for the industrial-scale conversion of synthesis gas (carbon monoxide and hydrogen) into hydrocarbons. Experts from BASF's Catalysis Research in Ludwigshafen have now developed a new catalyst for this process that allows the dedicated production of olefins for the company's production Verbund. This important advance is the starting shot for the process technology development which is scheduled for completion by the middle of the next decade.

"The use of synthesis gas will offer us the possibility of broadening our raw material base in future," emphasizes Dr. Andreas Kreimeyer, Member of BASF's Board of Executive Directors and Research Executive Director. "This is because synthesis gas can be obtained both from the fossil raw materials oil, gas and coal and from renewable resources." This flexibility in terms of the raw material used but also the products synthesized makes the successful further development of the Fischer-Tropsch synthesis an interesting alternative to cracker technology. The economic potential for implementing the process in an industrial-scale plant naturally depends on the raw material costs. At today's prices for naphtha, the cost effectiveness of this process is established.

"The development of the new heterogeneous catalyst is so far advanced that we can now begin customizing the corresponding process," explains Professor Dr. Rainer Diercks, Head of BASF's Competence Center Chemicals Research and Engineering and spokesman of the Growth Cluster Raw Material Change. With the aid of miniplant technology, the experts will establish the optimal reaction conditions and how the catalyst behaves under production conditions. Development activities have so far focused on how to significantly increase selectivity for the production of olefins with two to four carbon atoms. "Our researchers have already achieved considerable successes in only two years after the project launch in mid 2006," reports Professor Diercks. "This demonstrates the great expertise of our employees and BASF's outstanding position in catalyst research."

For the period 2006 to 2008, BASF has allocated altogether about €100 million for research activities in the Growth Cluster Raw Material Change. The scientists are addressing the entire range of options available for supplementing the crude oil product naphtha with other raw materials for the various value chains. BASF sees these options not only in the increased use of renewable resources but especially of natural gas and, over the longer term, also of coal. Process innovations allowing the utilization of the alternative carbon sources will be vital for the stepwise implementation of raw material change.

Christian Böhme | idw
Further information:
http://www.basf.com

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>