Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BASF researchers develop new catalyst for the Fischer-Tropsch synthesis

29.09.2008
Starting into the future with a flexible raw material base / Process for manufacture of olefins from synthesis gas will further strengthen BASF Verbund over the long term

The high prices of naphtha (crude petroleum) as a feedstock for steam crackers are prompting the chemical industry to reevaluate alternative approaches to securing raw material supplies.

One long-known process is the Fischer-Tropsch synthesis for the industrial-scale conversion of synthesis gas (carbon monoxide and hydrogen) into hydrocarbons. Experts from BASF's Catalysis Research in Ludwigshafen have now developed a new catalyst for this process that allows the dedicated production of olefins for the company's production Verbund. This important advance is the starting shot for the process technology development which is scheduled for completion by the middle of the next decade.

"The use of synthesis gas will offer us the possibility of broadening our raw material base in future," emphasizes Dr. Andreas Kreimeyer, Member of BASF's Board of Executive Directors and Research Executive Director. "This is because synthesis gas can be obtained both from the fossil raw materials oil, gas and coal and from renewable resources." This flexibility in terms of the raw material used but also the products synthesized makes the successful further development of the Fischer-Tropsch synthesis an interesting alternative to cracker technology. The economic potential for implementing the process in an industrial-scale plant naturally depends on the raw material costs. At today's prices for naphtha, the cost effectiveness of this process is established.

"The development of the new heterogeneous catalyst is so far advanced that we can now begin customizing the corresponding process," explains Professor Dr. Rainer Diercks, Head of BASF's Competence Center Chemicals Research and Engineering and spokesman of the Growth Cluster Raw Material Change. With the aid of miniplant technology, the experts will establish the optimal reaction conditions and how the catalyst behaves under production conditions. Development activities have so far focused on how to significantly increase selectivity for the production of olefins with two to four carbon atoms. "Our researchers have already achieved considerable successes in only two years after the project launch in mid 2006," reports Professor Diercks. "This demonstrates the great expertise of our employees and BASF's outstanding position in catalyst research."

For the period 2006 to 2008, BASF has allocated altogether about €100 million for research activities in the Growth Cluster Raw Material Change. The scientists are addressing the entire range of options available for supplementing the crude oil product naphtha with other raw materials for the various value chains. BASF sees these options not only in the increased use of renewable resources but especially of natural gas and, over the longer term, also of coal. Process innovations allowing the utilization of the alternative carbon sources will be vital for the stepwise implementation of raw material change.

Christian Böhme | idw
Further information:
http://www.basf.com

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>