Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Barrow scientists uncover clues on inflammation in central nervous system

22.10.2010
Scientists at Barrow Neurological Institute have recently made discoveries about a type of cell that may limit inflammation in the central nervous system (CNS) – a finding that could have important implications in the treatment of brain disorders such as multiple sclerosis. The research, led by Barrow's Fu-Dong Shi, MD, PhD, was published in the August 2010 issue of The Journal of Experimental Medicine, and simultaneously highlighted in Nature.

Dr. Shi directs the Neuroimmunology Laboratory and Flow Cytometry Core Facility at Barrow. One of his research interests is natural killer (NK) cells, a type of immune cell that destroys tissue that has been infected by pathogens and malignant cells. While recent research has shed more light on the role of NK cells in other parts of the body, Dr. Shi's research is unveiling important discoveries about how NK cells work in the CNS.

In multiple sclerosis, the body's immune system attacks myelin, a protective sheath surrounding nerve cells in the brain and spinal cord. By studying a pre-clinical model of multiple sclerosis, the Barrow research revealed that enriching an affected area with NK cells improved disease symptoms, while blocking NK cells to the CNS made symptoms worse. The research indicates that NK cells – especially those that originate in the CNS, as opposed to NK cells from peripheral organs – play a critical role in controlling the magnitude of CNS inflammation and immune response.

"These studies provide novel insight into the biology of NK cells and might lead to the design of NK cell-based approaches for intervention in inflammatory and autoimmune disorders of the central nervous system," says Dr. Shi. "Our findings have important implications for understanding the efficacy of some drugs currently used in CNS diseases such as multiple sclerosis."

About Barrow: Barrow Neurological Institute of St. Joseph's Hospital and Medical Center in Phoenix, Arizona, is internationally recognized as a leader in neurological research and patient care and is consistently voted as among the Top 10 hospitals for neurology and neurology in the United States. Barrow treats patients with a wide range of neurological conditions, including brain and spinal tumors, cerebrovascular conditions, and neuromuscular disorders. Barrow's clinicians and researchers are devoted to providing excellent patient care and finding better ways to treat neurological disorders.

Lynne Reaves | EurekAlert!
Further information:
http://www.chw.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>