Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Barrow scientists uncover clues on inflammation in central nervous system

22.10.2010
Scientists at Barrow Neurological Institute have recently made discoveries about a type of cell that may limit inflammation in the central nervous system (CNS) – a finding that could have important implications in the treatment of brain disorders such as multiple sclerosis. The research, led by Barrow's Fu-Dong Shi, MD, PhD, was published in the August 2010 issue of The Journal of Experimental Medicine, and simultaneously highlighted in Nature.

Dr. Shi directs the Neuroimmunology Laboratory and Flow Cytometry Core Facility at Barrow. One of his research interests is natural killer (NK) cells, a type of immune cell that destroys tissue that has been infected by pathogens and malignant cells. While recent research has shed more light on the role of NK cells in other parts of the body, Dr. Shi's research is unveiling important discoveries about how NK cells work in the CNS.

In multiple sclerosis, the body's immune system attacks myelin, a protective sheath surrounding nerve cells in the brain and spinal cord. By studying a pre-clinical model of multiple sclerosis, the Barrow research revealed that enriching an affected area with NK cells improved disease symptoms, while blocking NK cells to the CNS made symptoms worse. The research indicates that NK cells – especially those that originate in the CNS, as opposed to NK cells from peripheral organs – play a critical role in controlling the magnitude of CNS inflammation and immune response.

"These studies provide novel insight into the biology of NK cells and might lead to the design of NK cell-based approaches for intervention in inflammatory and autoimmune disorders of the central nervous system," says Dr. Shi. "Our findings have important implications for understanding the efficacy of some drugs currently used in CNS diseases such as multiple sclerosis."

About Barrow: Barrow Neurological Institute of St. Joseph's Hospital and Medical Center in Phoenix, Arizona, is internationally recognized as a leader in neurological research and patient care and is consistently voted as among the Top 10 hospitals for neurology and neurology in the United States. Barrow treats patients with a wide range of neurological conditions, including brain and spinal tumors, cerebrovascular conditions, and neuromuscular disorders. Barrow's clinicians and researchers are devoted to providing excellent patient care and finding better ways to treat neurological disorders.

Lynne Reaves | EurekAlert!
Further information:
http://www.chw.edu

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>