Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Barrow scientists identify new stem cell activity in human brain

29.09.2011
Finding raises questions of how the human brain develops and evolves

Researchers at Barrow Neurological Institute at St. Joseph's Hospital and Medical Center have identified a new pathway of stem cell activity in the brain that represents potential targets of brain injuries affecting newborns. The recent study, which raises new questions of how the brain evolves, is published in the current issue of Nature, one of the world's most cited scientific journals.

Nader Sanai, MD, director of Barrow's Brain Tumor Research Center, led this study, which is the first developmental study of human neural stem cells in a region of the brain called the subventricular zone, the tissue structure in which brain stem cells reside. Also participating in the study were researchers from University of California San Francisco and the University of Valencia in Spain.

The findings revealed that there is a pathway of young migrating neurons targeting the prefrontal cortex of the human brain in the first few months of life. After the first year of life, the subventricular zone of the brain slows down, tapering production of new brain cells by the time a child is 18-months and then to nearly zero by age two. This revelation settles conflicting prior reports that suggested that human neural stem cell cells remain highly active into adulthood.

"In the first few months of life, we identified streams of newly-generated cells from the subventricular portion of the brain moving toward the frontal cortex," says Dr. Sanai. "The existence of this new pathway, which has no known counterpart in all other studied vertebrates, raises questions about the mechanics of how the human brain develops and has evolved."

Researchers believe this study holds important implications for the understanding of neonatal brain diseases that can cause death or devastating, life-long brain damage. These conditions include germinal matrix hemorrhages, the most common type of brain hemorrhage that occurs in infants; and perinatal hypoxic – ischaemic injuries, exposure to low oxygen and decreased blood flow that can lead to diseases such as cerebral palsy and seizure disorders.

"The first year of human life has a window of vulnerability, as well as tremendous opportunity, for the brain," says Dr. Sanai. "It's a period of incredible growth, organization, and flexibility, as fresh neural connections are created, broken, and remade. A better understanding of how things can go wrong in that critical period could ultimately improve the chances that things will go right."

Carmelle Malkovich | EurekAlert!
Further information:
http://www.chw.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>