Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Barrier in mosquito midgut protects invading pathogens

Discovery may inform new strategies for blocking malaria transmission

What: Scientists studying the Anopheles gambiae mosquito – the main vector of malaria – have found that when the mosquito takes a blood meal, that act triggers two enzymes to form a network of crisscrossing proteins around the ingested blood.

The formation of this protein barrier, the researchers found, is part of the normal digestive process that allows so-called "healthy" or commensal gut bacteria to grow without activating mosquito immune responses.

But there is a downside: The barrier also prevents the mosquito's immune defense system from clearing any disease-causing agents that may have slipped into the blood meal, such as the Plasmodium malaria parasite, which in turn can be passed on to humans.

Disrupting the protein barrier, however, can trigger mosquito immune defenses to intervene and protect the insect from infection, notes the research team from the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health. The enzymes involved in the protein barrier are called immunomodulatory peroxidase (IMPer) and dual oxidase (Duox).

The researchers believe it might be possible to prevent the formation of the protein barrier by immunizing people with IMPer or the proteins that crisscross. This vaccine would generate antibodies that, after a mosquito feeds on a human, could disrupt the barrier, reduce parasite survival in the mosquito and prevent malaria transmission.

The role of IMPer-Duox in forming a protective barrier was unexpected – and previously unrecognized, according to Carolina Barillas-Mury, M.D., Ph.D., the senior study author. When her research group silenced, or turned off, the gene for either IMPer or Duox, the mosquito's midgut immune system took over and greatly reduced Plasmodium infection, indicating that IMPer and Duox are both required for parasite survival.

The IMPer-Duox system also is found in the mucous membrane of some human tissues, such as the colon. Dr. Barillas-Mury's group is investigating whether a protective protein barrier similar to that seen in mosquitoes also forms in vertebrates, including humans. If so, the barrier could be part of the process that normally prevents the colon from activating immune responses against commensal bacteria, as this would be harmful and lead to chronic inflammation. The existence of such a barrier in humans could have broad implications for the prevention and treatment of diseases such as chronic inflammatory bowel disease.

Article: S Kumar et al. A peroxidase/dual oxidase system modulates midgut epithelial immunity in Anopheles gambiae. Science. DOI 10.1126/science.1184008 (2010).

Who: Carolina Barillas-Mury, M.D., Ph.D., chief of the Mosquito Immunity and Vector Competence Unit in NIAID's Laboratory of Malaria and Vector Research, is available to comment on this article.

Contact: To schedule interviews, please contact the NIAID Communications Office, 301-402-1663,

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at

The National Institutes of Health (NIH)—The Nation's Medical Research Agency—includes 27 Institutes and Centers and is a component of the U. S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments and cures for both common and rare diseases. For more information about NIH and its programs, visit

NIAID Communications Office | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>