Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Barrier in mosquito midgut protects invading pathogens

Discovery may inform new strategies for blocking malaria transmission

What: Scientists studying the Anopheles gambiae mosquito – the main vector of malaria – have found that when the mosquito takes a blood meal, that act triggers two enzymes to form a network of crisscrossing proteins around the ingested blood.

The formation of this protein barrier, the researchers found, is part of the normal digestive process that allows so-called "healthy" or commensal gut bacteria to grow without activating mosquito immune responses.

But there is a downside: The barrier also prevents the mosquito's immune defense system from clearing any disease-causing agents that may have slipped into the blood meal, such as the Plasmodium malaria parasite, which in turn can be passed on to humans.

Disrupting the protein barrier, however, can trigger mosquito immune defenses to intervene and protect the insect from infection, notes the research team from the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health. The enzymes involved in the protein barrier are called immunomodulatory peroxidase (IMPer) and dual oxidase (Duox).

The researchers believe it might be possible to prevent the formation of the protein barrier by immunizing people with IMPer or the proteins that crisscross. This vaccine would generate antibodies that, after a mosquito feeds on a human, could disrupt the barrier, reduce parasite survival in the mosquito and prevent malaria transmission.

The role of IMPer-Duox in forming a protective barrier was unexpected – and previously unrecognized, according to Carolina Barillas-Mury, M.D., Ph.D., the senior study author. When her research group silenced, or turned off, the gene for either IMPer or Duox, the mosquito's midgut immune system took over and greatly reduced Plasmodium infection, indicating that IMPer and Duox are both required for parasite survival.

The IMPer-Duox system also is found in the mucous membrane of some human tissues, such as the colon. Dr. Barillas-Mury's group is investigating whether a protective protein barrier similar to that seen in mosquitoes also forms in vertebrates, including humans. If so, the barrier could be part of the process that normally prevents the colon from activating immune responses against commensal bacteria, as this would be harmful and lead to chronic inflammation. The existence of such a barrier in humans could have broad implications for the prevention and treatment of diseases such as chronic inflammatory bowel disease.

Article: S Kumar et al. A peroxidase/dual oxidase system modulates midgut epithelial immunity in Anopheles gambiae. Science. DOI 10.1126/science.1184008 (2010).

Who: Carolina Barillas-Mury, M.D., Ph.D., chief of the Mosquito Immunity and Vector Competence Unit in NIAID's Laboratory of Malaria and Vector Research, is available to comment on this article.

Contact: To schedule interviews, please contact the NIAID Communications Office, 301-402-1663,

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at

The National Institutes of Health (NIH)—The Nation's Medical Research Agency—includes 27 Institutes and Centers and is a component of the U. S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments and cures for both common and rare diseases. For more information about NIH and its programs, visit

NIAID Communications Office | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>