Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Barely any nanosilver from consumer products in the water

18.04.2013
Environmental toxicology

Nanosilver in wastewater can cause severe environmental damage if it occurs as a metal. A study conducted within the scope of the National Research Programme "Opportunities and Risks of Nanomaterials" (NRP 64) now shows that nanosilver is quickly transformed into less problematic substances on its way to the wastewater treatment plant. In addition, it is efficiently retained in the sewage sludge so that only a small portion of it reaches the water systems.

Nanosilver is the show horse in the nanotechnology stable – not only does it hold great promise for the future, it is already contained in hundreds of consumer products today. Cosmetics, food packaging, disinfectants and cleaning agents are but some examples. Nanosilver is also commonly used in antibacterial socks and functional clothing. An estimated 300 tonnes or more of nanosilver are used each year the world over – and a substantial part of it enters the water cycle via wastewater. Within the scope of the National Research Programme "Opportunities and Risks of Nanomaterials" (NRP 64), a team led by Ralf Kägi from Eawag in Dübendorf has for the first time examined more closely (*) just what happens to nanosilver on its journey from the drainpipe to the wastewater treatment plant, and in what form it is eventually released into the environment.

Wastewater samples and laboratory experiments
The researchers took samples from the Swiss wastewater system in order to study how nanosilver is transported. In addition, they established through laboratory experiments what happens to nanosilver in wastewater or in the wastewater treatment plant. They discovered that nanosilver does not remain in its metallic form for very long: it is efficiently transformed into a silver sulfide salt. "We presume that sulfidation already largely takes place in the sewer channel," Kägi says. That's good news, because "these salt crystals cause much fewer problems, the silver is much less soluble in this form". Dissolved ions are the main reason why silver can be harmful to the environment and can stop bacteria from getting to work in the sewage sludge.

The Eawag researchers have for the first time clearly shown that nanosilver, too, is quickly transformed into silver sulfide – regardless of how the particles are coated. Until now this effect was only known from wastewater produced by the photo industry. Whether as metallic nanoparticles, as dissolved silver ions or as an insoluble silver saline deposit, the original form of the silver apparently does not play a crucial role in sulfidation. However, the salination speed depends heavily on the size of the particles: small nanosilver (10 nanometres) is very rapidly transformed, while larger particles may never fully sulfidise and may continue to release silver ions into the environment.

Efficiently removing silver from wastewater
The researchers were also able to show that approximately 95% of the nanoparticles are bound in the sewage sludge. Only 5% of the silver remains in the treated water. This percentage could be further reduced by using better particle filters. Venturing into the nano dimension would not be necessary, though: the sulfidised nanosilver aggregates almost entirely on large particles in the wastewater. With a reasonable effort, they could be removed more efficiently from the wastewater than is presently the case.

The study did not examine what happens to nanosilver in the sewage sludge thereafter. In Switzerland, it is not permissible to use sewage sludge on farmland, and most of the sludge is therefore burned. The heavy metals separated in this process should not be released into the environment in large quantities.

(*) Kägi Ralf, Voegelin Andreas, Ort Christoph, Sinnet Brian, Thalmann Basilius, Krismer Jasmin, Hagendorfer Harald, Elumelu Maline and Mueller Elisabeth. Fate and transformation of silver nanoparticles in urban wastewater systems (2013). Water Research: doi 10.1016/j.watres.2012.11.060
(available as a PDF from the SNSF; e-mail: com@snf.ch)

About NRP 64
The aim of the National Research Programme "Opportunities and Risks of Nanomaterials" (NRP 64) is to close research gaps so that the opportunities and risks of using nanomaterials can be more accurately assessed. The results of the 23 research projects will serve as a basis for the preparation of guidelines for the production, use and disposal of nanomaterials. This will support the development and application of safe technologies, optimise the benefits of using nanomaterials and minimise risk for humans and the environment. NRP 64 has a budget of CHF 12 million and will run until October 2016.


Contact
Dr. Ralf Kägi
Eawag
Überlandstrasse 133
Postfach 611
8600 Dübendorf
Switzerland
Tel.: +41 58 765 52 73
E-mail: ralf.kaegi@eawag.ch

Communication division | idw
Further information:
http://www.nfp64.ch
http://www.snsf.ch

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>