Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bar-tailed godwit sets record for long-distance flight

How is it possible to fly 11 000 kilometres without a single break? The record holder for long distance flight outdoes all man-made aircraft. The bar-tailed godwit has very low energy consumption, but this is not enough to explain its success.

Every autumn the bar-tailed godwit undertakes an eight-day journey from Alaska to New Zealand. The bird flies non-stop, without once breaking the journey to rest or eat. Then when spring comes, the bar-tailed godwit makes the 11 000-kilometre journey back to Alaska.

Professor of Ecology Anders Hedenström from Lund University has pondered over how this species of bird can fly so far without stopping. The distance is twice as far as previously known non-stop distances for migratory birds.

Professor Hedenström emphasises that the bar-tailed godwit is far superior to all aircraft constructed by humans when it comes to the art of flying for a long time without a break. The long-distance flight record for aircraft is held by QiniteQ’s Zephyr, an unmanned solar-powered craft. It can remain in the air for 82 hours, around three and a half days, compared with the bar-tailed godwit’s eight-day flight.

But what is it that makes the bar-tailed godwit able to fly 11 000 kilometres without a single break? How can these birds manage without sleep or food for eight whole days? One explanation is that they consume unusually little energy compared with other species of bird. Anders Hedenström has calculated that the bar-tailed godwit consumes 0.41 per cent of its body weight each hour during its long flight.

“This figure is extremely low compared with other migratory birds”, he says.

However, other factors also play a role. It is important to have the right ratio of body weight to size to be able to carry sufficient energy for the entire flight. The energy mainly comprises body fat, and to some extent also protein. It is also important to have an aerodynamic body shape so that air resistance is minimised. A further success factor is flight speed. The bar-tailed godwit is a quick flyer, which means that it can cover long distances in a reasonable time.

A comparison can be made with a completely different group of long-distance travellers from the animal kingdom – eels. These animals swim a distance of 5 500 kilometres between Europe and the Sargasso Sea, and manage to do it with significantly lower energy consumption than the bar-tailed godwit. However, they maintain such a low speed that they could never travel across the globe as often as the bar-tailed godwit does. To complete the bar-tailed godwit’s 11 000-kilometre journey would take the eel 345 days, according to Anders Hedenström.

There are still pieces of the jigsaw missing that could explain the bar-tailed godwit’s record non-stop flight. Could the bird’s success be due to a particularly good ability to navigate with the help of an inner compass that makes use of the earth’s magnetic field, for example? Anders Hedenström notes that there are a number of exciting questions surrounding the bar-tailed godwit’s ability not to get lost up in the air.

For more information, please contact:
Anders Hedenström, Professor of Theoretical Ecology
Department of Biology, Lund University
Tel: +46 (0)46 222 41 42 or +46 (0)70 689 14 76
Pressofficer Lena Björk Blixt;; +46-46 222 7186

Megan Grindlay | idw
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>