Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bar-tailed godwit sets record for long-distance flight

10.06.2010
How is it possible to fly 11 000 kilometres without a single break? The record holder for long distance flight outdoes all man-made aircraft. The bar-tailed godwit has very low energy consumption, but this is not enough to explain its success.

Every autumn the bar-tailed godwit undertakes an eight-day journey from Alaska to New Zealand. The bird flies non-stop, without once breaking the journey to rest or eat. Then when spring comes, the bar-tailed godwit makes the 11 000-kilometre journey back to Alaska.

Professor of Ecology Anders Hedenström from Lund University has pondered over how this species of bird can fly so far without stopping. The distance is twice as far as previously known non-stop distances for migratory birds.

Professor Hedenström emphasises that the bar-tailed godwit is far superior to all aircraft constructed by humans when it comes to the art of flying for a long time without a break. The long-distance flight record for aircraft is held by QiniteQ’s Zephyr, an unmanned solar-powered craft. It can remain in the air for 82 hours, around three and a half days, compared with the bar-tailed godwit’s eight-day flight.

But what is it that makes the bar-tailed godwit able to fly 11 000 kilometres without a single break? How can these birds manage without sleep or food for eight whole days? One explanation is that they consume unusually little energy compared with other species of bird. Anders Hedenström has calculated that the bar-tailed godwit consumes 0.41 per cent of its body weight each hour during its long flight.

“This figure is extremely low compared with other migratory birds”, he says.

However, other factors also play a role. It is important to have the right ratio of body weight to size to be able to carry sufficient energy for the entire flight. The energy mainly comprises body fat, and to some extent also protein. It is also important to have an aerodynamic body shape so that air resistance is minimised. A further success factor is flight speed. The bar-tailed godwit is a quick flyer, which means that it can cover long distances in a reasonable time.

A comparison can be made with a completely different group of long-distance travellers from the animal kingdom – eels. These animals swim a distance of 5 500 kilometres between Europe and the Sargasso Sea, and manage to do it with significantly lower energy consumption than the bar-tailed godwit. However, they maintain such a low speed that they could never travel across the globe as often as the bar-tailed godwit does. To complete the bar-tailed godwit’s 11 000-kilometre journey would take the eel 345 days, according to Anders Hedenström.

There are still pieces of the jigsaw missing that could explain the bar-tailed godwit’s record non-stop flight. Could the bird’s success be due to a particularly good ability to navigate with the help of an inner compass that makes use of the earth’s magnetic field, for example? Anders Hedenström notes that there are a number of exciting questions surrounding the bar-tailed godwit’s ability not to get lost up in the air.

For more information, please contact:
Anders Hedenström, Professor of Theoretical Ecology
Department of Biology, Lund University
Tel: +46 (0)46 222 41 42 or +46 (0)70 689 14 76
Email: Anders.Hedenstrom@teorekol.lu.se
Pressofficer Lena Björk Blixt; Lena.Bjork_Blixt@kanslin.lu.se; +46-46 222 7186

Megan Grindlay | idw
Further information:
http://www.vr.se

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>