Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bar-tailed godwit sets record for long-distance flight

10.06.2010
How is it possible to fly 11 000 kilometres without a single break? The record holder for long distance flight outdoes all man-made aircraft. The bar-tailed godwit has very low energy consumption, but this is not enough to explain its success.

Every autumn the bar-tailed godwit undertakes an eight-day journey from Alaska to New Zealand. The bird flies non-stop, without once breaking the journey to rest or eat. Then when spring comes, the bar-tailed godwit makes the 11 000-kilometre journey back to Alaska.

Professor of Ecology Anders Hedenström from Lund University has pondered over how this species of bird can fly so far without stopping. The distance is twice as far as previously known non-stop distances for migratory birds.

Professor Hedenström emphasises that the bar-tailed godwit is far superior to all aircraft constructed by humans when it comes to the art of flying for a long time without a break. The long-distance flight record for aircraft is held by QiniteQ’s Zephyr, an unmanned solar-powered craft. It can remain in the air for 82 hours, around three and a half days, compared with the bar-tailed godwit’s eight-day flight.

But what is it that makes the bar-tailed godwit able to fly 11 000 kilometres without a single break? How can these birds manage without sleep or food for eight whole days? One explanation is that they consume unusually little energy compared with other species of bird. Anders Hedenström has calculated that the bar-tailed godwit consumes 0.41 per cent of its body weight each hour during its long flight.

“This figure is extremely low compared with other migratory birds”, he says.

However, other factors also play a role. It is important to have the right ratio of body weight to size to be able to carry sufficient energy for the entire flight. The energy mainly comprises body fat, and to some extent also protein. It is also important to have an aerodynamic body shape so that air resistance is minimised. A further success factor is flight speed. The bar-tailed godwit is a quick flyer, which means that it can cover long distances in a reasonable time.

A comparison can be made with a completely different group of long-distance travellers from the animal kingdom – eels. These animals swim a distance of 5 500 kilometres between Europe and the Sargasso Sea, and manage to do it with significantly lower energy consumption than the bar-tailed godwit. However, they maintain such a low speed that they could never travel across the globe as often as the bar-tailed godwit does. To complete the bar-tailed godwit’s 11 000-kilometre journey would take the eel 345 days, according to Anders Hedenström.

There are still pieces of the jigsaw missing that could explain the bar-tailed godwit’s record non-stop flight. Could the bird’s success be due to a particularly good ability to navigate with the help of an inner compass that makes use of the earth’s magnetic field, for example? Anders Hedenström notes that there are a number of exciting questions surrounding the bar-tailed godwit’s ability not to get lost up in the air.

For more information, please contact:
Anders Hedenström, Professor of Theoretical Ecology
Department of Biology, Lund University
Tel: +46 (0)46 222 41 42 or +46 (0)70 689 14 76
Email: Anders.Hedenstrom@teorekol.lu.se
Pressofficer Lena Björk Blixt; Lena.Bjork_Blixt@kanslin.lu.se; +46-46 222 7186

Megan Grindlay | idw
Further information:
http://www.vr.se

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>