Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bar-tailed godwit sets record for long-distance flight

10.06.2010
How is it possible to fly 11 000 kilometres without a single break? The record holder for long distance flight outdoes all man-made aircraft. The bar-tailed godwit has very low energy consumption, but this is not enough to explain its success.

Every autumn the bar-tailed godwit undertakes an eight-day journey from Alaska to New Zealand. The bird flies non-stop, without once breaking the journey to rest or eat. Then when spring comes, the bar-tailed godwit makes the 11 000-kilometre journey back to Alaska.

Professor of Ecology Anders Hedenström from Lund University has pondered over how this species of bird can fly so far without stopping. The distance is twice as far as previously known non-stop distances for migratory birds.

Professor Hedenström emphasises that the bar-tailed godwit is far superior to all aircraft constructed by humans when it comes to the art of flying for a long time without a break. The long-distance flight record for aircraft is held by QiniteQ’s Zephyr, an unmanned solar-powered craft. It can remain in the air for 82 hours, around three and a half days, compared with the bar-tailed godwit’s eight-day flight.

But what is it that makes the bar-tailed godwit able to fly 11 000 kilometres without a single break? How can these birds manage without sleep or food for eight whole days? One explanation is that they consume unusually little energy compared with other species of bird. Anders Hedenström has calculated that the bar-tailed godwit consumes 0.41 per cent of its body weight each hour during its long flight.

“This figure is extremely low compared with other migratory birds”, he says.

However, other factors also play a role. It is important to have the right ratio of body weight to size to be able to carry sufficient energy for the entire flight. The energy mainly comprises body fat, and to some extent also protein. It is also important to have an aerodynamic body shape so that air resistance is minimised. A further success factor is flight speed. The bar-tailed godwit is a quick flyer, which means that it can cover long distances in a reasonable time.

A comparison can be made with a completely different group of long-distance travellers from the animal kingdom – eels. These animals swim a distance of 5 500 kilometres between Europe and the Sargasso Sea, and manage to do it with significantly lower energy consumption than the bar-tailed godwit. However, they maintain such a low speed that they could never travel across the globe as often as the bar-tailed godwit does. To complete the bar-tailed godwit’s 11 000-kilometre journey would take the eel 345 days, according to Anders Hedenström.

There are still pieces of the jigsaw missing that could explain the bar-tailed godwit’s record non-stop flight. Could the bird’s success be due to a particularly good ability to navigate with the help of an inner compass that makes use of the earth’s magnetic field, for example? Anders Hedenström notes that there are a number of exciting questions surrounding the bar-tailed godwit’s ability not to get lost up in the air.

For more information, please contact:
Anders Hedenström, Professor of Theoretical Ecology
Department of Biology, Lund University
Tel: +46 (0)46 222 41 42 or +46 (0)70 689 14 76
Email: Anders.Hedenstrom@teorekol.lu.se
Pressofficer Lena Björk Blixt; Lena.Bjork_Blixt@kanslin.lu.se; +46-46 222 7186

Megan Grindlay | idw
Further information:
http://www.vr.se

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>