Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More bang for your bond

22.02.2010
Size-controllable bulky ligands stabilize multiple bonds of heavy elements into photoactive materials

Organic compounds containing double or triple bonds can pack a powerful punch. By sharing electrons between atoms through a process called pi conjugation, unsaturated molecules often have exceptional photonic and electronic behavior, making them essential components in state-of-the-art products such as polymer light-emitting displays.

One way to boost the usefulness of multiply bonded materials is to add heavy elements other than carbon into organic frameworks. Now, Kohei Tamao and colleagues from the RIKEN Advanced Science Institute in Wako and Kyoto University have developed a size-controllable molecular ring system that enables double bonded silicon–phosphorus units (Si=P) to be securely incorporated into pi conjugated networks1—unlocking previously unseen photo-absorption and emission activity.

Because Si=P bonds are extremely reactive, chemists typically attach them to geometrically large molecules known as bulky ligands that protect the double bonded elements. Unfortunately, most bulky ligands cause the Si=P double bond to twist, disrupting the critical pi conjugation.

Tamao and his team designed a new type of bulky molecule—the so-called ‘Rind’ ligands—to address this rotational problem. Based on a rigid, symmetric skeleton of three fused rings known as s-hydrindacene, Rind groups also contain alkyl side chains that can be tailored in length to control ligand bulkiness.

Adding Rind ligands to Si- and P-based starting materials produced molecules with highly coplanar Si=P bond with aromatic groups on Si that maintained pi conjugation in the solid state and allowed a unique room temperature fluorescence to emerge. According to Tsukasa Matsuo, a co-author of the study, the Rind ligands interlock with each other to enforce the favored planar geometry for pi conjugation.

“Rind groups can make planar arrangements out of a variety of conjugated systems,” says Matsuo. “But the electronic effect of Rind itself is small, because they are perpendicular to the conjugated electron system.”

The researchers also discovered that Rind ligands produced startling results when used to stabilize molecules containing copper atoms and organic groups2. While organocopper compounds are extremely useful in synthetic chemistry, their structures remain largely unknown because of continuous aggregation and dissociation processes in solution. By intoducing Rind ligands to copper bromide, the team isolated stable compounds containing remarkable internal architectures, such as four copper atoms arranged into a planar square.

“We were surprised when we found the beautiful structures of the organocopper materials,” says Matsuo. The four-copper framework also gave new luminescent qualities to these complexes—another reason why the researchers are continuing to explore ways to make functional materials using innovative bulky Rind ligands.

The corresponding author for this highlight is based at the Functional Elemento-Organic Chemistry Unit, RIKEN Advanced Science Institute

Journal information
1. Li, B., Matsuo, T., Hashizume, D., Fueno, H., Tanaka, K. & Tamao, K. ð-Conjugated phosphasilenes stabilized by fused-ring bulky groups. Journal of the American Chemical Society 131, 13222–13223 (2009).

2. Ito, M., Hashizume, D., Fukunaga, T., Matsuo, T. & Tamao, K. Isolated monomeric and dimeric mixed diorganocuprates based on the size-controllable bulky ‘Rind’ ligands. Journal of the American Chemical Society 131, 18024–18025 (2009).

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6177
http://www.researchsea.com

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>