Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Balance organs affect brain blood flow

24.09.2009
The organs of the inner ear have a direct effect on brain blood flow, independent of blood pressure and CO2 levels in the blood. Researchers writing in the open access journal BMC Neuroscience used a series of human centrifuge experiments to investigate the effects of stimulation of the otoliths and semi-circular canals on cerebrovascular response.

Dr. Jorge Serrador, from Harvard Medical School, worked with a team of researchers, including NASA scientists, to carry out the tests. He said, "While a role for the vestibular system in the autonomic response to position has been documented, this is the first study to demonstrate a direct effect of otolith stimulation on cerebral blood flow".

The researchers stimulated the vestibular organs of 25 healthy people by tilting them forwards and backwards, and by translation on a centrifuge. Changes in cerebral flow velocity were dependent on the frequency of vestibular stimulation and were in opposition to changes in blood pressure and not directly related to changes in end tidal CO2.

Speaking about the implications of these results, Serrador said, "Standing up places the head above the heart and thus makes it harder to provide blood flow to the brain. Having a connection between the otoliths, which tell us that we are standing, and the cerebrovasculature may be part of the adaption that allows us to maintain our brain blood flow when upright. This connection might explain the reduced cerebral blood flow in some people. For example, aging is associated with vestibular loss that might contribute to reductions in global cerebral blood flow. Similarly, patients with orthostatic intolerance could have underlying vestibular impairment that exacerbates cerebral hypoperfusion when upright. The knowledge gained from this study might lead to new treatment options for these conditions".

Notes to Editors

1. Vestibular effects on cerebral blood flow
Jorge M Serrador, Todd T Schlegel, F Owen Black and Scott J Wood
BMC Neuroscience (in press)
2. BMC Neuroscience is an open access journal publishing original peer-reviewed research articles in all aspects of the nervous system, including molecular, cellular, developmental and animal model studies, as well as cognitive and behavioral research, and computational modeling. BMC Neuroscience (ISSN 1471-2202) is indexed/tracked/covered by PubMed, MEDLINE, BIOSIS, CAS, Scopus, EMBASE, PsycINFO, Thomson Reuters (ISI) and Google Scholar.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector

Graeme Baldwin | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>