Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Baking Powder for Environmentally Friendly Hydrogen Storage

14.06.2011
Carbon dioxide neutral hydrogen storage with a bicarbonate/formate system

Hydrogen is under consideration as a promising energy carrier for a future sustainable energy economy. However, practicable solutions for the easy and safe storage of hydrogen are still being sought.

Despite some progress, no generally applicable solutions that meet the requirements of industry have been found to date. In the journal Angewandte Chemie Matthias Beller and his team at the Leibnitz Institute for Catalysis (Rostock, Germany) have now introduced a new approach to hydrogen storage that is based on simple salts of formic acid and carbonic acid.

Practical hydrogen storage materials must take up and give off hydrogen at standard pressure and room temperature, accommodate a large amount of hydrogen in as little space as possible, and release it rapidly and on-demand. Metal hydride tanks store hydrogen in a relatively manageable volume but are very heavy and expensive, as well as operating only at high temperatures or far too slowly. In addition to organic hydrogen storage materials, such as methane and methanol, researchers have been interested in formic acid (HCO2H) and its salts, known as formates, for the generation of hydrogen.

A fundamental problem with the use of these storage materials is the separation of the carbon dioxide formed when the hydrogen is released. The team from Rostock has now successfully used a special ruthenium catalyst that catalyzes both the release and uptake of hydrogen to establish a reversible, CO2-free hydrogen storage cycle. In this system, hydrogen is released from nontoxic formates and the resulting CO2 captured in the form of bicarbonates. Bicarbonates are a component of many natural stones and are also commonly used as baking powder or sherbet (sodium bicarbonate, NaHCO3).

“Our new concept has a number of advantages,” says Beller, “in comparison to CO2, solid bicarbonate is easy to handle and is very soluble in water. The resulting bicarbonate solution can be catalytically converted to a formate solution under much milder conditions than those required for the reactions to form methane or methanol.” In addition, the harmless solid could easily be stored and transported. Retrieval of the hydrogen occurs at room temperature or even lower. Says Beller, “Most important is that a closed carbon cycle is now possible because the resulting bicarbonate can simply be loaded up with hydrogen again.”

Author: Matthias Beller, Leibniz-Institut für Katalyse, http://www.catalysis.de/Beller-Matthias.239.0.html
Title: CO2-"Neutral" Hydrogen Storage Based on Bicarbonates and Formates
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201101995

Matthias Beller | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>