Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Several baffling puzzles in protein molecular structure solved with new method

02.05.2011
Determining the molecular configuration of proteins is important in nanotechology, drug design, disease research and many other fields

The structures of many protein molecules remain unsolved even after experts apply an extensive array of approaches. An international collaboration has led to a new, high-performance method that rapidly determined the structure of protein molecules in several cases where previous methods had failed.

The usefulness of the new method is reported May 1 in Nature advanced online publication. The lead authors are Dr. Frank DiMaio of the University of Washington (UW) in Seattle and Dr. Thomas C. Terwilliger of Los Alamos National Laboratory in New Mexico. The senior author is Dr. David Baker, of the UW Department of Biochemistry.

A protein's molecular structure shapes its functions. In biomedical and health research, for example, scientists are interested in the molecular structure of specific proteins for many reasons, a few of which are:

To design drugs that selectively target, at the molecular level, particular biochemical reactions in the body

To understand abnormal human proteins in disease, such as those found in cancer and neurodegenerative disorders like Alzheimer's, and how these abnormal proteins cause malfunctions

To learn the shape and function of virus particles and how they act to cause infections

To see how the chains of amino acids, decoded from the DNA in genes, fold and twist into normally or abnormally shaped protein molecules

To design new proteins not found in the natural world, such as enzymes to speed up a slow biochemical reaction

To find ways to replace malfunctioning molecular parts of proteins that are critical to health

To devise nano-scale tools, such as molecular motors

"The important new method described this week in Nature highlights the value of computational modeling in helping scientists to determine the structures and functions of molecules that are difficult to study using current techniques," said Dr. Peter Preusch, who oversees Baker's research grant and other structural biology grants at the National Institutes of Health (NIH). "Expanding the repertoire of known protein structures -- a key goal of the NIH Protein Structure Initiative, which helped fund the research – will be of great benefit to scientists striving to design new therapeutic agents to treat disease."

The methods devised by the group overcome some of the limitations of X-ray crystallography in determining the molecular structure of a protein. X-ray crystallography obtains information about the positions of atoms, chemical bonds, the density of electrons and other arrangements within a protein molecule.

The information is gleaned by striking protein crystals with X-ray beams. The beams bounce off in several directions.

Measuring the angles and intensities of these diffracted beams enables scientists to produce a 3-dimensional image of electron density. However, information about the molecular structure can be lost in taking the measurements, due to restraints posed by physics.

Scientists attempt to sidestep this problem by comparing the crystallography results to previously solved protein structures that resemble the unknown structure. The technique to "fill in the blanks" is called molecular replacement.

Molecular replacement has its own limitations in interpreting the electron density maps produced by X-ray crystallography, according to the authors of the paper. Techniques such as automatic chain tracing often follow the comparative model more closely than the actual structure of the protein under question. These mistakes lead to failure to obtain an accurate configuration of the molecule.

The researchers showed that this limitation can be substantially reduced by combining computer algorithms for protein structure modeling with those for determining structure via X-ray crystallography.

Several years ago, University of Washington researchers and their colleagues developed a structure prediction method called Rosetta. This program takes a chain of amino acids – protein-building blocks strung all in a row -- and searches for the lowest energy conformation possible from folding, twisting and packing the chain into a three-dimensional (3-D) molecule.

The researchers found that even very poor electron density maps from molecular replacement solutions could be useful. These maps could guide Rosetta structural prediction searches that are based on energy optimization. By taking these energy-optimized predicted models, and looking for consistency with the electron density data contained in the X-ray crystallography, new maps are generated. The new maps are then subjected to automatic chain tracing to produce 3-D models of the protein molecular structure. The models are checked with a sophisticated monitoring technique to see if any are successful.

To test the performance of their new integrated method, the researchers looked at 13 sets of X-ray crystallography data on molecules whose structures could not be solved by expert crystallographers. These structures remained unsolved even after the application of an extensive array of other approaches. The new integrated method was able to yield high resolution structures for 8 of these 13 highly challenging models.

"The results show that structural prediction methods such as Rosetta can be even more powerful when combined with X-ray crystallography data," the researchers noted. They added that the integrated approach probably outperforms others because it provides physical chemistry and protein structural information that can guide the massive sampling of candidate configurations. This information eliminates most conformations that are not physically possible.

Our procedures, the authors noted, required considerable computation, as up to several thousand Rosetta model predictions are generated for each structure. The researchers have developed automated procedures that potentially could narrow down the possibilities and lessen the number of times a model is rebuilt to make corrections. This automation could reduce computing time.

Through Baker's laboratory, many members of the general public contribute their unused home computer time to help in the effort to obtain structural models of proteins that are biologically and medically significant. The scientific discovery game is called "Fold It." (http://fold.it/portal/)

Other authors of the paper appearing this week in Nature are Dr. Randy J. Read of the University of Cambridge, United Kingdom; Dr. Alexander Wlodawer of the National Cancer Institute; Drs. Gustav Oberdorfer and Ulrike Wagner of University of Graz, Austria; Dr. Eugene Valkov of the University of Cambridge; Drs. Assaf Alon and Deborah Fass of the Weizmann Institute of Science in Rehovot, Israel; Drs. Herbert L. Axelrod and Debanu Das of the SLAC National Accelerator Laboratory in Menlo Park, Calif.; Dr. Sergey M. Vorobiev of Columbia University in New York; and Dr. Hideo Iwai of the University of Helsinki, Finland.

The research was funded by the National Institute of General Medical Sciences and the National Center for Research Resources at the National Institutes of Health, the Howard Hughes Medical Institute, the Israel Science Foundation, DK Molecular Enzymology, Austrian Science Fund, the Center for Cancer Research at the National Cancer Institute, the Academy of Finland, and the U.S. Department of Energy's Office of Science, Biological and Environmental Research. The Joint Center for Structural Genomics, which is supported by the NIH's Protein Structure Initiative, contributed to the protein production and structural work.

Leila Gray | EurekAlert!
Further information:
http://www.washington.edu

More articles from Life Sciences:

nachricht Historical rainfall levels are significant in carbon emissions from soil
30.05.2017 | University of Texas at Austin

nachricht 3D printer inks from the woods
30.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>