Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Baffling Blood Problem Explained

21.03.2013
60-year-old health mystery solved by UVM and French research team
In the early 1950’s, a 66-year-old woman, sick with colon cancer, received a blood transfusion. Then, unexpectedly, she suffered a severe rejection of the transfused blood. Reporting on her case, the French medical journal Revue D’Hématologie identified her as, simply, “Patient Vel.”

After a previous transfusion, it turns out, Mrs. Vel had developed a potent antibody against some unknown molecule found on the red blood cells of most people in the world—but not found on her own red blood cells.

But what was this molecule? Nobody could find it. A blood mystery began, and, from her case, a new blood type, “Vel-negative,” was described in 1952.

Soon it was discovered that Mrs. Vel was not alone. Though rare, it is estimated now that over 200,000 people in Europe and a similar number in North America are Vel-negative, about 1 in 2,500.
For these people, successive blood transfusions could easily turn to kidney failure and death. So, for sixty years, doctors and researchers have hunted—unsuccessfully—for the underlying cause of this blood type.

But now a team of scientists from the University of Vermont and France has found the missing molecule—a tiny protein called SMIM1—and the mystery is solved.

Reporting in the journal EMBO Molecular Medicine, UVM’s Bryan Ballif, Lionel Arnaud of the French National Institute of Blood Transfusion, and their colleagues explain how they uncovered the biochemical and genetic basis of Vel-negative blood.

“Our findings promise to provide immediate assistance to health-care professionals should they encounter this rare but vexing blood type,” says Ballif.

The pre-publication results were presented online, March 18, 2013, and the finalized report will be published, as an open-access article, in the next edition of the journal.

(Last year, Ballif and Arnaud identified the proteins responsible for two other rare blood types, Junior and Langeris, moving the global count of understood blood types or systems from 30 to 32. Now, with Vel, the number rises to 33.)

New DNA tests

Before this new research, the only way to determine if someone was Vel-negative or positive was with tests using antibodies made by the few people previously identified as Vel-negative following their rejection of transfused blood. Not surprisingly, these antibodies are vanishingly rare and, therefore, many hospitals and blood banks don’t have the capacity to test for this blood type.

“Vel– blood is one of the most difficult blood types to supply in many countries,” the scientists write, "This is partly due to the rarity of the Vel− blood type, but also to the lack of systematic screening for the Vel−type in blood donors.”

In response, the UVM and Paris researchers developed two fast DNA-based tests for identifying Vel-negative blood and people. These tests can be easily integrated into existing blood testing procedures—and can be completed in a few hours or less.

“It’s usually a crisis when you need a transfusion” says Ballif. “For those rare Vel-negative individuals in need of a blood transfusion, this is a potentially life-saving time frame.”

Protein hunters

To make their discovery, Arnaud and coworkers in Paris used some of the rare Vel-negative antibody to biochemically purify the mystery protein from the surface of human red blood cells. Then they shipped them to Ballif in Vermont.

The little protein didn’t reveal its identity easily. “I had to fish through thousands of proteins,” Ballif says. And several experiments failed to find the culprit because of its unusual biochemistry—and pipsqueak size. But he eventually nabbed it using a high-resolution mass spectrometer funded by the Vermont Genetics Network. And what he found was new to science. “It was only a predicted protein based on the human genome,” says Ballif, but hadn’t yet been observed. It has since been named: Small Integral Membrane Protein 1, or SMIM1.

Next, Arnaud’s team in France tested seventy people known to be Vel-negative. In every case, they found a deletion—a tiny missing chunk of DNA—in the gene that instructs cells on how to manufacture SMIM1. This was the final proof the scientists needed to show that the Vel-negative blood type is caused by a lack of the SMIM1 protein on a patient’s red blood cells.

Your blood

Today, personalized medicine— where doctors treat us based on our unique biological makeup—is a hot trend. “The science of blood transfusion has been attempting personalized medicine since its inception,” Ballif notes, “given that its goal is to personalize a transfusion by making the best match possible between donor and recipient.”

"Identifying and making available rare blood types such as Vel-negative blood brings us closer to a goal of personalized medicine," he says. “Even if you are that rare one person out of 2,500 that is Vel-negative, we now know how to rapidly type your blood and find blood for you—should you need a transfusion.”

Joshua Brown | EurekAlert!
Further information:
http://www.uvm.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>