Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacterium that causes gum disease packs a 1-2 punch to the jaw

12.06.2013
The newly discovered bacterium that causes gum disease delivers a one-two punch by also triggering normally protective proteins in the mouth to actually destroy more bone, a University of Michigan study found.

Scientists and oral health care providers have known for decades that bacteria are responsible for periodontitis, or gum disease. Until now, however, they hadn't identified the bacterium.

"Identifying the mechanism that is responsible for periodontitis is a major discovery," said Yizu Jiao, a postdoctoral fellow at the U-M Health System, and lead author of the study appearing in the recent issue of the journal Cell Host and Microbe.

Jiao and Noahiro Inohara, research associate professor at the U-M Health System, worked with William Giannobile, professor of dentistry, and Julie Marchesan, formerly of Giannobile's lab.

The study yielded yet another significant finding: the bacterium that causes gum disease, called NI1060, also triggers a normally protective protein in the oral cavity, called Nod1, to turn traitorous and actually trigger bone-destroying cells. Under normal circumstances, Nod1 fights harmful bacterium in the body.

"Nod1 is a part of our protective mechanisms against bacterial infection. It helps us to fight infection by recruiting neutrophils, blood cells that act as bacterial killers," Inohara said. "It also removes harmful bacteria during infection. However, in the case of periodontitis, accumulation of NI1060 stimulates Nod1 to trigger neutrophils and osteoclasts, which are cells that destroy bone in the oral cavity."

Giannobile, who also chairs the Department of Periodontics and Oral Medicine at the U-M School of Dentistry, said understanding what causes gum disease at the molecular level could help develop personalized therapy for dental patients.

"The findings from this study underscore the connection between beneficial and harmful bacteria that normally reside in the oral cavity, how a harmful bacterium causes the disease, and how an at-risk patient might respond to such bacteria," Giannobile said.

Study:
http://www.cell.com/cell-host-microbe/abstract/S1931
-3128%2813%2900147-9?switch=standard
William Giannobile:
http://www.dent.umich.edu/pom/faculty/links/wgbio
Noahiro Inohara:
http://www-personal.umich.edu/~ino/myself.html
U-M School of Dentistry:
http://www.dent.umich.edu
This work was supported by the National Institutes of Health and by the American Recovery and Reinvestment Act Supplement to the U-M Cancer Center Support Grant.

Laura Bailey | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>