Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacterium Found to Kill Malaria in Mosquitoes

13.05.2011
Researchers at the Johns Hopkins Bloomberg School of Public Health have identified a bacterium in field-caught mosquitoes that, when present, stops the development of Plasmodium falciparum, the parasite that causes malaria in humans.

According to the study, the Enterobacter bacterium is part of the naturally occurring microbial flora of the mosquito’s gut and kills the parasite by producing reactive oxygen species (or free radical molecules). The study is published in the May 13 edition of Science.

“We’ve previously shown that the mosquito’s midgut bacteria can activate its immune system and thereby indirectly limit the development of the malaria parasite. In this study we show that certain bacteria can directly block the malaria parasite’s development through the production of free radicals that are detrimental to Plasmodium in the mosquito gut,” said George Dimopoulos, PhD, senior author of the study and associate professor at theW. Harry Feinstone Department of Molecular Microbiology and Immunology, and the Johns Hopkins Malaria Research Institute. “We are particularly excited about this discovery because it may explain why mosquitoes of the same species and strain sometimes differ in their resistance to the parasite, and we may also use this knowledge to develop novel methods to stop the spread of malaria. One biocontrol strategy may, for example, rely on the exposure of mosquitoes in the field to this natural bacterium, resulting in resistance to the malaria parasite. ”

Like humans, mosquitoes have a variety of bacteria in their digestive systems. For the study, the researchers isolated the Enterobacter bacterium from the midgut of Anopheles mosquitoes collected near the Johns Hopkins Malaria Research Institute at Macha, which is located in southern Zambia. About 25 percent of the mosquitoes collected contained the specific bacteria strain. Laboratory studies showed the bacterium inhibited the growth of Plasmodium up to 99 percent, both in the mosquito gut and in a test tube culture of the human malaria parasite. Higher doses of bacteria had a greater impact on Plasmodium growth.

Worldwide, malaria afflicts more than 225 million people. Each year, the disease kills nearly 800,000, many of whom are children living in Africa.

Authors of “Natural microbe-mediated refractorieness to Plasmodium infection in Anopheles gambiae” include Chris M. Cirmotich, Yuemei Dong, April M. Clayton, Simone L. Sandiford, and Jayme A. Souza-Neto of the Johns Hopkins Bloomberg School of Public Health and Musapa Mulenga of the Malaria Institute at Macha in Zambia.

The research was supported by the National Institutes of Health/National Institute of Allergy and Infectious Disease, and the Johns Hopkins Malaria Research Institute.

Tim Parsons | Newswise Science News
Further information:
http://www.jhsph.edu

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>