Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacterium From Canadian High Arctic Offers Clues to Possible Life on Mars

27.05.2013
Permafrost microbe discovered growing at –15°C, the coldest temperature ever reported for bacterial growth

The temperature in the permafrost on Ellesmere Island in the Canadian high Arctic is nearly as cold as that of the surface of Mars. So the recent discovery by a McGill University led team of scientists of a bacterium that is able to thrive at –15ºC, the coldest temperature ever reported for bacterial growth, is exciting. The bacterium offers clues about some of the necessary preconditions for microbial life on both the Saturn moon Enceladus and Mars, where similar briny subzero conditions are thought to exist.

The team of researchers, led by Prof. Lyle Whyte and postdoctoral fellow Nadia Mykytczuk, both from the Dept. of Natural Resource Sciences at McGill University, discovered Planococcus halocryophilus OR1 after screening about 200 separate High Arctic microbes looking for the microorganism best adapted to the harsh conditions of the Arctic permafrost.

”We believe that this bacterium lives in very thin veins of very salty water found within the frozen permafrost on Ellesmere Island,” explains Whyte. “The salt in the permafrost brine veins keeps the water from freezing at the ambient permafrost temperature (~-16ºC), creating a habitable but very harsh environment. It’s not the easiest place to survive but this organism is capable of remaining active (i.e. breathing) to at least -25ºC in permafrost.”

In order to understand what it takes to be able to do so, Mykytczuk, Whyte and their colleagues studied the genomic sequence and other molecular traits of P. halocryophilus OR1. The researchers found that the bacterium adapts to the extremely cold, salty conditions in which it is found thanks to significant modifications in its cell structure and function and increased amounts of cold-adapted proteins. These include changes to the membranes that envelop the bacterium and protect it from the hostile environment in which it lives.

The genome sequence also revealed that this permafrost microbe is unusual in other ways. It appears to maintain high levels of compounds inside the bacterial cell that act as a sort of molecular antifreeze, keeping the microbe from freezing solid, while at the same time protecting the cell from the very salty exterior environment.

The researchers believe however, that such microbes may potentially play a harmful role in extremely cold environments such as the High Arctic by increasing carbon dioxide emissions from the melting permafrost, one of the results of global warming.

Whyte is delighted with the discovery and says with a laugh, “I’m kind of proud of this bug. It comes from the Canadian High Arctic and is our cold temperature champion, but what we can learn from this microbe may tell us a lot about how similar microbial life may exist elsewhere in the solar system.”

This research was funded by: Natural Sciences and Engineering Research Council of Canada CREATE Canadian Astrobiology Training Program, Canadian Space Agency, the Polar Continental Shelf Program, Canada Research Chairs Program, and the Canada Foundation for Innovation.

To contact the researcher: lyle.whyte@mcgill.ca

Katherine Gombay
Media Relations/Relations avec les médias
McGill University
T: 514-398-2189

Katherine Gombay | Newswise
Further information:
http://www.mcgill.ca

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>