Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacterial toxin sets the course for infection

08.11.2013
Scientists unravel the role of a pathogen molecule

Every year gastro-intestinal diseases have lethal consequences for more than five million individuals. Researchers from Braunschweig have now discovered what makes a specific strain of Yersinia pseudotuberculosis–one of the main instigators for these infections–so dangerous: the bacteria produce a molecule called CNFy that facilitates the infection process for them.


Yersinia (in blue) cause serious infections.
HZI/Manfred Rohde

It changes the host cells in a manner that enables the injection apparatus of Yersinia, which injects toxins into the cells, to work more efficiently. This strengthens the infection and leads to inflammation of the tissue.

Whether an immune cell divides, alarms other immune cells or dies is strictly controlled in our immune system. “Molecular switches” influence these processes and basically set the course for different pathways. In light of the evolutionary competition between the immune system and the microbes, researchers have found that bacteria produce different substances to manipulate the position of the switches to their advantage.

Scientists at the Helmholtz Centre for Infection Research (HZI) in Braunschweig and at the Hannover Medical School (MHH) have examined one of those substances in more detail. Their results have been published in the American scientific magazine PLOS Pathogens. The team led by Prof Petra Dersch, head of the Department “Molecular Infection Biology”, became aware of the molecule called CNFy, because the bacterium Yersinia pseudotuberculosis produces it in large quantities.

Yersinia pseudotuberculosis is transmitted via contaminated food and can generate gastro-intestinal diseases. However, not all strains produce CNFy. The scientists had therefore assumed that it played no significant role. The interdisciplinary team has now shown that this was a mistake. “Bacteria only produce molecules that are useful for their purposes. Therefore, we wanted to know why Yersinia would need CNFy,” Dersch says.

In order to elucidate its function, the scientists genetically modified a bacterial strain that usually forms CNFy in such a way that it lost the ability to produce this factor. “The altered bacterium was no longer capable of escaping the immune system of the host organism and could not cause disease,” reports Janina Schweer, PhD student at the HZI. This is remarkable since the bacteria certainly have other pathogenic characteristics in their repertoire. They have large molecular complexes at their disposal with which they can inject destructive substances into the host cell. This is a very effective method to promote an infection. “It seems that this mechanism is not sufficiently active in some Yersinia. Apparently, the examined Yersinia strain needs CNFy so that its “molecular syringes” can inject sufficient quantities of active substances into the immune cells,” explains Prof Jochen Hühn, head of the Department “Experimental Immunology” at the HZI. These active substances, mostly cell toxins, damage the immune cells. Many of the substances cause cell mortality. This facilitates the expansion of Yersinia within the infected organism. During advanced infections, inflammation occurs, as well as damage to the tissue.

The researchers have also identified the molecular target that CNFy manipulates, generating the dramatic consequences: this involves the so-called small Rho GTPases. These enzymes initiate a whole cascade of events, for example alteration of the cytoskeleton. This leads to pores in the host cell surface, through which bacterial syringes can more efficiently transport active agents into the cell. The observed cell mortality of the immune cells is introduced through Rho GTPases as well.

“We here have discovered a very clever strategy of Yersinia pseudotuberculosis. With the aid of CNFy, the bacterium manipulates the host cell in such a manner that the injection apparatus can work more effectively,” explains Dersch. “It sets the course for an efficient infection and triggers onset of the disease.”

The present study shows that CNFy is very important for Yersinia. At the same time, it emphasizes the central role of the injection apparatus that is deployed in a more robust manner via CNFy – it is, and remains, an important drug target for intervention measures.

Original publication:
Janina Schweer, Devesha Kulkarni, Annika Kochut, Jörn Pezoldt, Fabio Pisano, Marina C. Pils, Harald Genth, Jochen Hühn und Petra Dersch
The cytotoxic necrotizing factor of Yersinia pseudotuberculosis (CNFy) enhances inflammation and Yop delivery during infection by activation of Rho GTPases.

PLOS Pathogens, 2013

Gastrointestinal infections trigger a wide range of intestinal disorders. They are caused by bacteria such as Yersinia. The Department “Molecular Infection Biology” studies how Yersinia attaches to the intestinal cell layer, prevents attacks of the immune system and spreads within the body.

The Department “Experimental Immunology“ at the HZI studies the development of immune cells and the cellular and molecular mechanisms that keep the immune system in balance. The scientists pay particular attention to the so-called regulatory T cells.

The Helmholtz Centre for Infection Research (HZI)
Scientists at the Helmholtz Centre for Infection Research in Braunschweig, Germany, are engaged in the study of different mechanisms of infection and of the body’s response to infection. Helping to improve the scientific community’s understanding of a given bacterium’s or virus’ pathogenicity is key to developing effective new treatments and vaccines.

http://www.helmholtz-hzi.de

Dr. Birgit Manno | Helmholtz-Zentrum
Further information:
http://www.helmholtz-hzi.de
http://www.helmholtz-hzi.de/en/news_events/news/view/article/complete/bacterial_toxin_sets_the_course_for_infection/

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>