Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacterial Plasmids -- the Freeloading and the Heavy-Lifters -- Balance the High Price of Disease

06.02.2012
Studying self-replicating genetic units, called plasmids, found in one of the world's widest-ranging pathogenic soil bacteria -- the crown-gall-disease-causing microorganism Agrobacterium tumefaciens -- Indiana University biologists are showing how freeloading, mutant derivatives of these plasmids benefit while the virulent, disease-causing plasmids do the heavy-lifting of initiating infection in plant hosts.

The research confirms that the ability of bacteria to cause disease comes at a significant cost that is only counterbalanced by the benefits they experience from infected host organisms.

A. tumefaciens is widely studied for its remarkable biology not only because it causes disease in over 140 genera of broadleaf plants, including fruit trees, grapes, roses and walnut trees, but also because it is considered one of the most important tools for plant biotechnology: It is the only organism known to routinely engage in inter-kingdom lateral gene transfer. A. tumefaciens infects host plants by transferring a portion of its own DNA into plant cells, and this integrated bacterial DNA is expressed in the plant cells, leading diseased plants to develop tumors and produce resources that benefit the pathogen.

"We've identified two types of costs the plant pathogen A. tumefaciens pays for traits conferred by genes carried on plasmids," said lead author Thomas G. Platt, a postdoctoral researcher in the IU Bloomington College of Arts and Sciences' Department of Biology. "There is a relatively low cost of maintaining the tumor-inducing virulence plasmid, but there is also a dramatically large cost of expressing the genes that are required to infect plants."

Plants with crown gall disease can also benefit a second type of plasmid that can be found in A. tumefaciens: Nonpathogenic plasmids that lack the genes required to infect plants, yet are still able to benefit from the breakdown of nutrient resources released by infected plant tissue.

"These nonvirulent strains are able to freeload on public goods produced by host plants infected by their disease-causing relatives, while themselves avoiding the burdens associated with A. tumefaciens' virulence plasmid," Platt explained. "And our results suggest that at least one source of the selective pressure favoring the spread of these avirulent mutants stems from those high costs associated with the expression of the genes underlying pathogenesis."

Scientists are especially interested in freeloading or cheating strains of bacteria as a possible means of constraining infection caused by more aggressive, pathogenic strains. Creating something of a balancing act, mutant cheater strains may counter or constrain virulence as they maintain higher fitness by not having to invest in the cellular machinery virulent bacteria employ to infect hosts.

"The population dynamics and maintenance of bacterial plasmids depend on the costs they impose and benefits they confer on the cells that host them, and those costs and benefits are environmentally context dependent," Platt said. "The outcome of competition between two agrobacteria strains such as the ones we have been studying varies with the environmental conditions in which they are competing, and this genotype-by-genotype-by-environment interaction suggests that the virulence plasmid may be subject to selective pressures that vary over space and time."

Platt and IU biology professors James D. Bever and Clay Fuqua recently published the measured fitness costs imposed by plasmids to host cells, under certain environmental conditions, in the research article "A cooperative virulence plasmid imposes a high fitness cost under conditions that induce pathogenesis," that appeared in Proceedings of the Royal Society B. That work will be expanded upon in research accepted for publication in an upcoming edition of the journal Evolution, where the team further examines how cooperation benefits depend on resource availability and the importance of ecological dynamics, including resource consumption and population growth, on the evolution of cooperative traits.

To speak with Platt or for more information, please contact Steve Chaplin, IU Communications, at 812-856-1896 or stjchap@iu.edu. Tweeting Indiana University science: @IndianaScience

Steve Chaplin | Newswise Science News
Further information:
http://www.iu.edu

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>