Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacterial DNA may integrate into human genome more readily in tumor tissue

21.06.2013
Gene transfer may play role in cancer and other diseases associated with DNA damage

Bacterial DNA may integrate into the human genome more readily in tumors than in normal human tissue, according to a new study from the University of Maryland School of Medicine's Institute for Genome Sciences. Researchers analyzed genomic sequencing data available from the Human Genome Project, the 1,000 Genomes Project and The Cancer Genome Atlas (TCGA). They considered the phenomenon of lateral gene transfer (LGT), the transmission of genetic material between organisms in the absence of sex.

Scientists have already shown that bacteria can transfer DNA to the genome of an animal. The researchers at the University of Maryland Institute for Genome Sciences found evidence that lateral gene transfer is possible from bacteria to the cells of the human body, known as human somatic cells. They found the bacterial DNA was more likely to integrate in the genome in tumor samples than in normal, healthy somatic cells. The phenomenon might play a role in cancer and other diseases associated with DNA damage. The paper was published in PLOS Computational Biology on June 20.

"LGT from bacteria to animals was only described recently, and it is exciting to find that such transfers can be found in the genome of human somatic cells and particularly in cancer genomes," says Julie C. Dunning Hotopp, Ph.D., Assistant Professor of Microbiology and Immunology at the Institute for Genome Sciences (IGS) at the University of Maryland School of Medicine and lead author on the paper. Dr. Hotopp also is a research scientist with the University of Maryland Marlene and Stewart Greenebaum Cancer Center. "Studies applying this approach to additional cancer genome projects could be fruitful, leading us to a better understanding of the mechanisms of cancer."

In the research, a team of interdisciplinary scientists and bioinformatics researchers found that while only 63.5% of TCGA samples analyzed were from tumors, the tumor samples contained 99.9% of reads supporting bacterial integration. The data presented a compelling case that LGT occurs in the human somatic genome and that it could have an important role in cancer and other human diseases associated with mutations. It is possible that LGT mutations play a role in carcinogenesis, yet it is also possible that they could simply be passenger mutations.

The investigators suggest several competing ideas to explain the results, though more research is needed for definitive answers. One possibility is that the mutations are part of carcinogenesis, the process by which normal cells turn into cancer cells. Alternatively, tumor cells are so very rapidly proliferating that they may be more permissive to lateral gene transfer. It is also possible that the bacteria are causing these mutations because they benefit the bacteria.

The study was funded by the National Institutes of Health's Director's New Innovator Award Program (1-DP2-OD007372) and the NSF Microbial Sequencing Program (EF-0826732).

"This is the type of basic science research, conducted using the analysis of much publicly available genomic data, that makes us leaders in the cutting edge field of genomic science and personalized medicine," says E. Albert Reece, M.D., Ph.D., M.B.A., Vice President for Medical Affairs at the University of Maryland and the John Z. and Akiko K. Bowers Distinguished Professor and Dean of the University of Maryland School of Medicine. "It is just this type of research that will lead us to a new world of personalized medicine, in which doctors can use each patient's genomic make-up to determine care and preventive measures. We are excited to be a part of this future with the outstanding work of our Institute for Genome Sciences."

About the University of Maryland School of Medicine

Established in 1807, the University of Maryland School of Medicine is the first public medical school in the United States, the first to institute a residency-training program. The School of Medicine was the founding school of the University of Maryland and today is an integral part of the 11-campus University System of Maryland. On the University of Maryland's Baltimore campus, the School of Medicine serves as the anchor for a large academic health center which aims to provide the best medical education, conduct the most innovative biomedical research and provide the best patient care and community service to Maryland and beyond. http://www.medschool.umaryland.edu
About the Institute for Genome Sciences

The Institute for Genome Sciences (IGS) is an international research center within the University of Maryland School of Medicine. Comprised of an interdisciplinary, multidepartment team of investigators, the Institute uses the powerful tools of genomics and bioinformatics to understand genome function in health and disease, to study molecular and cellular networks in a variety of model systems, and to generate data and bioinformatics resources of value to the international scientific community.

Karen Robinson | EurekAlert!
Further information:
http://www.umaryland.edu
http://www.igs.umaryland.edu

More articles from Life Sciences:

nachricht First-of-its-kind chemical oscillator offers new level of molecular control
15.12.2017 | University of Texas at Austin

nachricht New technique could make captured carbon more valuable
15.12.2017 | DOE/Idaho National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New technique could make captured carbon more valuable

15.12.2017 | Life Sciences

First-of-its-kind chemical oscillator offers new level of molecular control

15.12.2017 | Life Sciences

A chip for environmental and health monitoring

15.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>