Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New bacterial behavior observed

17.12.2009
PNAS study documents puzzling movement of electricity-producing bacteria near energy sources

Bacteria dance the electric slide, officially named electrokinesis by the USC geobiologists who discovered the phenomenon.

Their study, published online today in PNAS Early Edition, describes what appears to be an entirely new bacterial behavior.

The metal-metabolizing Shewanella oneidensis microbe does not just cling to metal in its environment, as previously thought. Instead, it harvests electrochemical energy obtained upon contact with the metal and swims furiously for a few minutes before landing again.

Electrokinesis is more than a curiosity. Laboratory director and co-author Kenneth Nealson, the Wrigley Professor of Geobiology at USC and discoverer of Shewanella, hopes to boost the power of microbe-based fuel cells enough to produce usable energy.

The discovery of electrokinesis does not achieve that goal directly, but it should help researchers to better tune the complex living engines of microbial fuel cells.

"To optimize the bacteria is far more complicated than to optimize the fuel cell," Nealson said.

Electrokinesis was discovered in 2007 by Nealson's graduate student Howard Harris, an undergraduate at the time.

Nealson had given Harris what seemed an ideal assignment for a double major in cinema and biophysics.

"I had asked him if he would just take some movies of these bacteria doing what they do," Nealson said.

Filming through a microscope is hardly simple, but with the help of co-author and biophysics expert Moh El-Naggar, assistant professor of physics and astronomy at USC, Harris was able to make a computer analysis of a time-lapse sequence of bacteria near metal oxide particles.

"Every time the bacteria were around these particles … there was a great deal of swimming activity," Nealson recalled.

Harris then discovered that bacteria displayed the same behavior around the electrode of a battery. The swimming stopped when the electrode turned off, suggesting that the activity was electrical in origin.

As is often true with discoveries, this one raises more questions than it answers. Two in particular intrigue the researchers:

Why do the bacteria expend valuable energy swimming around?

How do the bacteria find the metal and return to it? Do they sense it through an electric field or the behavior of other bacteria?

Nealson and his team so far have only educated guesses.

For the first question, Nealson believes that the bacteria may swim away from the metal because they have too many competitors.

Bacteria get energy in two steps: by absorbing dissolved nutrients and then by converting those nutrients into biologically useful forms of energy through respiration, or the loss of electrons to an electron acceptor such as iron or manganese (humans also respire through the loss of electrons to oxygen, one of the most powerful electron acceptors).

"If electrons don't flow, it doesn't matter how much food you have," Nealson said.

However, he added, "in some environments, the food is much more precious than the electron acceptors."

If a metal surface became too crowded for bacteria to absorb nutrients easily, they might want to swim away and come back.

For the second question, Harris and co-author Mandy Ward, assistant professor of research in earth sciences at USC, are planning other experiments to understand exactly how Shewanella find electron acceptors.

They expect the experiments to keep Harris busy through his doctoral thesis.

The other co-authors on the PNAS paper were Orianna Bretschger of the J. Craig Venter Institute in San Diego, Margaret Romine of Pacific Northwest National Laboratory, and Anna Obraztsova, staff scientist in the Nealson laboratory at USC.

Carl Marziali | EurekAlert!
Further information:
http://www.usc.edu

Further reports about: Laboratory PNAS Shewanella oneidensis USC powerful electron acceptors

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

25.09.2017 | Trade Fair News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>